Tag Archives: farm machinery

China Best Sales CE Certificate Agricultural Machinery Potato Harvester Spare Parts Cardan Pto Drive Shaft and Farm Tractor Pto Shaft

Product Description

CE Certificate Agricultural Machinery Potato Harvester Spare Parts Cardan Pto Drive Shaft and Farm Tractor Pto Shaft

 

Product Description

 

A Power Take-Off shaft (PTO shaft) is a mechanical device utilized to transmit power from a tractor or other power source to an attached implement, such as a mower, tiller, or baler. Typically situated at the rear of the tractor, the PTO shaft is driven by the tractor’s engine through the transmission.
The primary purpose of the PTO shaft is to supply a rotating power source to the implement, enabling it to carry out its intended function. To connect the implement to the PTO shaft, a universal joint is employed, allowing for movement between the tractor and the implement while maintaining a consistent power transfer. 

Here is our advantages when compare to similar products from China:
1.Forged yokes make PTO shafts strong enough for usage and working;
2.Internal sizes standard to confirm installation smooth;
3.CE and ISO certificates to guarantee to quality of our goods;
4.Strong and professional package to confirm the good situation when you receive the goods.

Product Specifications

 

In farming, the most common way to transmit power from a tractor to an implement is by a driveline, connected to the PTO (Power Take Off) of the tractor to the IIC(Implement Input Connection). Drivelines are also commonly connected to shafts within the implement to transmit power to various mechanisms.
The following dimensions of the PTO types are available.
Type B:13/8″Z6(540 min)
Type D:13/8″Z21(1000 min)
Coupling a driveline to a PTO should be quick and simple because in normal use tractors must operate multiple implements. Consequently, yokes on the tractor-end of the driveline are fitted with a quick-disconnect system, such as push-pin or ball collar.
Specifications for a driveline, including the way it is coupled to a PTO, depend CZPT the implement.
Yokes on the llc side are rarely disconnected and may be fastened by quick-lock couplings (push-pin or ball collar).
Taper pins are the most stable connection for splined shafts and are commonly used in yokes and torque limiters. Taper pins are also often used to connect internal drive shafts on drivelines that are not frequently disconnected.
Torque limiter and clutches must always be installed on the implement side of the primary driveline.

 

Packaging & Shipping

 

 

 

Company Profile

HangZhou Hanon Technology Co.,ltd is a modern enterprise specilizing in the development,production,sales and services of Agricultural Parts like PTO shaft and Gearboxes and Hydraulic parts like  Cylinder , Valve ,Gearpump and motor etc..
We adhere to the principle of ” High Quality, Customers’Satisfaction”, using advanced technology and equipments to ensure all the technical standards of transmission .We follow the principle of people first , trying our best to set up a pleasant surroundings and platform of performance for each employee. So everyone can be self-consciously active to join Hanon Machinery.

FAQ

1.What’re your main products?

we currently product Agricultural Parts like PTO shaft and Gearboxes and Hydraulic parts like Cylinder , Valve ,Gear pump and motor.You can check the specifications for above product on our website and you can email us to recommend needed product per your specification too.

2.What’s your warranty terms?

One year.

3.What’s the lead time for a regular order?

Generally speaking, our regular standard product will need 30-45days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

4.What’s the payment term? 

When we quote for you,we will confirm with you the way of transaction,FOB,CIFetc.<br> For mass production goods, you need to pay 30% deposit before producing and70% balance against copy of documents.The most common way is by T/T.  

5.Can you send me a price list?

For all of our product, they are customized based on different requirements like length, ratio,voltage,and power etc. The price also varies according to annual quantity. So it’s really difficult for us to provide a price list. If you can share your detailed requirements and annual quantity, we’ll see what offer we can provide.

6.How to deliver the goods to us?

Usually we will ship the goods to you by sea.

Other Products

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Agricultural Spare Part, Agricultural Spare Part
Usage: Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying, Agricultural Machinery,Farm Tractor, Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying, Agricultural Machinery, Farm Tractor
Material: Carbon Steel, 45cr Steel, Carbon Steel
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

How do manufacturers ensure the compatibility of drive shafts with different equipment?

Manufacturers employ various strategies and processes to ensure the compatibility of drive shafts with different equipment. Compatibility refers to the ability of a drive shaft to effectively integrate and function within a specific piece of equipment or machinery. Manufacturers take into account several factors to ensure compatibility, including dimensional requirements, torque capacity, operating conditions, and specific application needs. Here’s a detailed explanation of how manufacturers ensure the compatibility of drive shafts:

1. Application Analysis:

Manufacturers begin by conducting a thorough analysis of the intended application and equipment requirements. This analysis involves understanding the specific torque and speed demands, operating conditions (such as temperature, vibration levels, and environmental factors), and any unique characteristics or constraints of the equipment. By gaining a comprehensive understanding of the application, manufacturers can tailor the design and specifications of the drive shaft to ensure compatibility.

2. Customization and Design:

Manufacturers often offer customization options to adapt drive shafts to different equipment. This customization involves tailoring the dimensions, materials, joint configurations, and other parameters to match the specific requirements of the equipment. By working closely with the equipment manufacturer or end-user, manufacturers can design drive shafts that align with the equipment’s mechanical interfaces, mounting points, available space, and other constraints. Customization ensures that the drive shaft fits seamlessly into the equipment, promoting compatibility and optimal performance.

3. Torque and Power Capacity:

Drive shaft manufacturers carefully determine the torque and power capacity of their products to ensure compatibility with different equipment. They consider factors such as the maximum torque requirements of the equipment, the expected operating conditions, and the safety margins necessary to withstand transient loads. By engineering drive shafts with appropriate torque ratings and power capacities, manufacturers ensure that the shaft can handle the demands of the equipment without experiencing premature failure or performance issues.

4. Material Selection:

Manufacturers choose materials for drive shafts based on the specific needs of different equipment. Factors such as torque capacity, operating temperature, corrosion resistance, and weight requirements influence material selection. Drive shafts may be made from various materials, including steel, aluminum alloys, or specialized composites, to provide the necessary strength, durability, and performance characteristics. The selected materials ensure compatibility with the equipment’s operating conditions, load requirements, and other environmental factors.

5. Joint Configurations:

Drive shafts incorporate joint configurations, such as universal joints (U-joints) or constant velocity (CV) joints, to accommodate different equipment needs. Manufacturers select and design the appropriate joint configuration based on factors such as operating angles, misalignment tolerances, and the desired level of smooth power transmission. The choice of joint configuration ensures that the drive shaft can effectively transmit power and accommodate the range of motion required by the equipment, promoting compatibility and reliable operation.

6. Quality Control and Testing:

Manufacturers implement stringent quality control processes and testing procedures to verify the compatibility of drive shafts with different equipment. These processes involve conducting dimensional inspections, material testing, torque and stress analysis, and performance testing under simulated operating conditions. By subjecting drive shafts to rigorous quality control measures, manufacturers can ensure that they meet the required specifications and performance criteria, guaranteeing compatibility with the intended equipment.

7. Compliance with Standards:

Manufacturers ensure that their drive shafts comply with relevant industry standards and regulations. Compliance with standards, such as ISO (International Organization for Standardization) or specific industry standards, provides assurance of quality, safety, and compatibility. Adhering to these standards helps manufacturers meet the expectations and requirements of equipment manufacturers and end-users, ensuring that the drive shafts are compatible and can be seamlessly integrated into different equipment.

8. Collaboration and Feedback:

Manufacturers often collaborate closely with equipment manufacturers, OEMs (Original Equipment Manufacturers), or end-users to gather feedback and incorporate their specific requirements into the drive shaft design and manufacturing processes. This collaborative approach ensures that the drive shafts are compatible with the intended equipment and meet the expectations of the end-users. By actively seeking input and feedback, manufacturers can continuously improve their products’ compatibility and performance.

In summary, manufacturers ensure the compatibility of drive shafts with different equipment through a combination of application analysis, customization, torque and power capacity considerations, material selection, joint configurations, quality control and testing, compliance with standards, and collaboration with equipment manufacturers and end-users. These efforts enable manufacturers to design and produce drive shafts that seamlessly integrate with various equipment, ensuring optimal performance, reliability, and compatibility in different applications.

pto shaft

How do drive shafts contribute to the efficiency of vehicle propulsion and power transmission?

Drive shafts play a crucial role in the efficiency of vehicle propulsion and power transmission systems. They are responsible for transferring power from the engine or power source to the wheels or driven components. Here’s a detailed explanation of how drive shafts contribute to the efficiency of vehicle propulsion and power transmission:

1. Power Transfer:

Drive shafts transmit power from the engine or power source to the wheels or driven components. By efficiently transferring rotational energy, drive shafts enable the vehicle to move forward or drive the machinery. The design and construction of drive shafts ensure minimal power loss during the transfer process, maximizing the efficiency of power transmission.

2. Torque Conversion:

Drive shafts can convert torque from the engine or power source to the wheels or driven components. Torque conversion is necessary to match the power characteristics of the engine with the requirements of the vehicle or machinery. Drive shafts with appropriate torque conversion capabilities ensure that the power delivered to the wheels is optimized for efficient propulsion and performance.

3. Constant Velocity (CV) Joints:

Many drive shafts incorporate Constant Velocity (CV) joints, which help maintain a constant speed and efficient power transmission, even when the driving and driven components are at different angles. CV joints allow for smooth power transfer and minimize vibration or power losses that may occur due to changing operating angles. By maintaining constant velocity, drive shafts contribute to efficient power transmission and improved overall vehicle performance.

4. Lightweight Construction:

Efficient drive shafts are often designed with lightweight materials, such as aluminum or composite materials. Lightweight construction reduces the rotational mass of the drive shaft, which results in lower inertia and improved efficiency. Reduced rotational mass enables the engine to accelerate and decelerate more quickly, allowing for better fuel efficiency and overall vehicle performance.

5. Minimized Friction:

Efficient drive shafts are engineered to minimize frictional losses during power transmission. They incorporate features such as high-quality bearings, low-friction seals, and proper lubrication to reduce energy losses caused by friction. By minimizing friction, drive shafts enhance power transmission efficiency and maximize the available power for propulsion or operating other machinery.

6. Balanced and Vibration-Free Operation:

Drive shafts undergo dynamic balancing during the manufacturing process to ensure smooth and vibration-free operation. Imbalances in the drive shaft can lead to power losses, increased wear, and vibrations that reduce overall efficiency. By balancing the drive shaft, it can spin evenly, minimizing vibrations and optimizing power transmission efficiency.

7. Maintenance and Regular Inspection:

Proper maintenance and regular inspection of drive shafts are essential for maintaining their efficiency. Regular lubrication, inspection of joints and components, and prompt repair or replacement of worn or damaged parts help ensure optimal power transmission efficiency. Well-maintained drive shafts operate with minimal friction, reduced power losses, and improved overall efficiency.

8. Integration with Efficient Transmission Systems:

Drive shafts work in conjunction with efficient transmission systems, such as manual, automatic, or continuously variable transmissions. These transmissions help optimize power delivery and gear ratios based on driving conditions and vehicle speed. By integrating with efficient transmission systems, drive shafts contribute to the overall efficiency of the vehicle propulsion and power transmission system.

9. Aerodynamic Considerations:

In some cases, drive shafts are designed with aerodynamic considerations in mind. Streamlined drive shafts, often used in high-performance or electric vehicles, minimize drag and air resistance to improve overall vehicle efficiency. By reducing aerodynamic drag, drive shafts contribute to the efficient propulsion and power transmission of the vehicle.

10. Optimized Length and Design:

Drive shafts are designed to have optimal lengths and designs to minimize energy losses. Excessive drive shaft length or improper design can introduce additional rotational mass, increase bending stresses, and result in energy losses. By optimizing the length and design, drive shafts maximize power transmission efficiency and contribute to improved overall vehicle efficiency.

Overall, drive shafts contribute to the efficiency of vehicle propulsion and power transmission through effective power transfer, torque conversion, utilization of CV joints, lightweight construction, minimized friction, balanced operation, regular maintenance, integration with efficient transmission systems, aerodynamic considerations, and optimized length and design. By ensuring efficient power delivery and minimizing energy losses, drive shafts play a significant role in enhancing the overall efficiency and performance of vehicles and machinery.

pto shaft

Are there variations in drive shaft designs for different types of machinery?

Yes, there are variations in drive shaft designs to cater to the specific requirements of different types of machinery. The design of a drive shaft is influenced by factors such as the application, power transmission needs, space limitations, operating conditions, and the type of driven components. Here’s an explanation of how drive shaft designs can vary for different types of machinery:

1. Automotive Applications:

In the automotive industry, drive shaft designs can vary depending on the vehicle’s configuration. Rear-wheel-drive vehicles typically use a single-piece or two-piece drive shaft, which connects the transmission or transfer case to the rear differential. Front-wheel-drive vehicles often use a different design, employing a drive shaft that combines with the constant velocity (CV) joints to transmit power to the front wheels. All-wheel-drive vehicles may have multiple drive shafts to distribute power to all wheels. The length, diameter, material, and joint types can differ based on the vehicle’s layout and torque requirements.

2. Industrial Machinery:

Drive shaft designs for industrial machinery depend on the specific application and power transmission requirements. In manufacturing machinery, such as conveyors, presses, and rotating equipment, drive shafts are designed to transfer power efficiently within the machine. They may incorporate flexible joints or use a splined or keyed connection to accommodate misalignment or allow for easy disassembly. The dimensions, materials, and reinforcement of the drive shaft are selected based on the torque, speed, and operating conditions of the machinery.

3. Agriculture and Farming:

Agricultural machinery, such as tractors, combines, and harvesters, often requires drive shafts that can handle high torque loads and varying operating angles. These drive shafts are designed to transmit power from the engine to attachments and implements, such as mowers, balers, tillers, and harvesters. They may incorporate telescopic sections to accommodate adjustable lengths, flexible joints to compensate for misalignment during operation, and protective shielding to prevent entanglement with crops or debris.

4. Construction and Heavy Equipment:

Construction and heavy equipment, including excavators, loaders, bulldozers, and cranes, require robust drive shaft designs capable of transmitting power in demanding conditions. These drive shafts often have larger diameters and thicker walls to handle high torque loads. They may incorporate universal joints or CV joints to accommodate operating angles and absorb shocks and vibrations. Drive shafts in this category may also have additional reinforcements to withstand the harsh environments and heavy-duty applications associated with construction and excavation.

5. Marine and Maritime Applications:

Drive shaft designs for marine applications are specifically engineered to withstand the corrosive effects of seawater and the high torque loads encountered in marine propulsion systems. Marine drive shafts are typically made from stainless steel or other corrosion-resistant materials. They may incorporate flexible couplings or dampening devices to reduce vibration and mitigate the effects of misalignment. The design of marine drive shafts also considers factors such as shaft length, diameter, and support bearings to ensure reliable power transmission in marine vessels.

6. Mining and Extraction Equipment:

In the mining industry, drive shafts are used in heavy machinery and equipment such as mining trucks, excavators, and drilling rigs. These drive shafts need to withstand extremely high torque loads and harsh operating conditions. Drive shaft designs for mining applications often feature larger diameters, thicker walls, and specialized materials such as alloy steel or composite materials. They may incorporate universal joints or CV joints to handle operating angles, and they are designed to be resistant to abrasion and wear.

These examples highlight the variations in drive shaft designs for different types of machinery. The design considerations take into account factors such as power requirements, operating conditions, space constraints, alignment needs, and the specific demands of the machinery or industry. By tailoring the drive shaft design to the unique requirements of each application, optimal power transmission efficiency and reliability can be achieved.

China Best Sales CE Certificate Agricultural Machinery Potato Harvester Spare Parts Cardan Pto Drive Shaft and Farm Tractor Pto Shaft  China Best Sales CE Certificate Agricultural Machinery Potato Harvester Spare Parts Cardan Pto Drive Shaft and Farm Tractor Pto Shaft
editor by CX 2024-03-29

China Hot selling OEM ODM CE Certificated Pto Driveshaft for Agricultural Farm Machinery

Product Description

ZheJiang WALLONG-HSIN MACHINERY ENGINEERING CORPORATION LTD. short name ‘JSW’, is a wholly state-owned company, also a subsidiary of SINOMACH GROUP (the biggest machinery group in China, ranked No.250 of TOP500 in 2571). 

JSW is founded in 1992 and registered with capital of 4.5 million US dollars, located in HangZhou city, ZheJiang Province, with workshop area 50,000 square meters with first-class production lines, and office area 3000 square meters.

JSW passed ISO 9001,ISO 14001,ISO 45001 ,ISO 50001 and AEO custom certified.
The turnover last year is 20 million US dollar,exporting to European, North American, South American, and Asian markets. 

We have successfully developed a wide range and variety of drive shaft products,mainly including PTO agricultural shaft, industrial cardan shaft, drive shaft for automotive, and universal couplings.

Our products are welcomed by all our customers based on our competitive price, guaranteed quality and on-time delivery.

*Agricultural PTO shaft :
Standard series, customized also accpeted.
Tube type:Triangle, Lemon, Star, Spline stub (Z6,Z8,Z20,Z21).
Accessory: various yokes, splined stub shaft, clutch and torque limiter.

*Industrial cardan shaft
Light duty type: flange Dia. Φ58-180mm
Medium duty type: SWC180 – 550

*Automotive drive shaft : 
Aftermarket for ATV,Pickup truck,Light truck

***HOW TO CHOOSE THE SUITABLE PTO SHAFT FOR YOUR DEMANDS?

1. Model/size of the universal joint, which is according to your requirment of maximum torque(TN) and R.P.M.

2. Closed overall length of shaft assembly (or cross (u-joint) to cross length).

3. Shape of the steel tube/pipe (traiangle, lemon, star, splined stub).

4. Type of the 2 end yokes/forks which used to connect the input end (power source) and output end (implement).
    Including the series of quick released splined yoke/fork, plain bore yoke/fork, wide-angle yoke/fork, double yoke/fork.

5. Overload protection device including the clutch and torque limitter.
    (shear bolt SB, free wheel/overrunning RA/RAS, ratchet SA/SAS, friction FF/FFS) 

6. Others requirements:such as with/no plastic guard, painting color, package type,etc.

Triangle tube type
Series Cross kit Operating torque
540rpm    1000rpm
Kw Pk Nm Kw Pk Nm
T1 1.01    22*54 12 16 210 18 25 172
T2 2.01    23.8*61.3 15 21 270 23 31 220
T3 3.01    27*70 22 30 390 35 47 330
T4 4.01    27*74.6 26 35 460 40 55 380
T5 5.01    30.2*80 35 47 620 54 74 520
T6 6.01    30.2*92 47 64 830 74 100 710
T7 7.01    30.2*106.5 55 75 970 87 118 830
T7N 7N.01 35*94 55 75 970 87 118 830
T8 8.01    35*106.5 70 95 110 110 150 1050
T38 38.01  38*105.6 78 105 123 123 166 1175
T9 9.01    41*108 88 120 140 140 190 1340
T10 10.01  41*118 106 145 179 170 230 1650

 

Lemon tube type
Series Cross kit Operating torque
540rpm    1000rpm
Kw Pk Nm Kw Pk Nm
L1 1.01    22*54 12 16 210 18 25 172
L2 2.01    23.8*61.3 15 21 270 23 31 220
L3 3.01    27*70 22 30 390 35 47 330
L4 4.01    27*74.6 26 35 460 40 55 380
L5 5.01    30.2*80 35 47 620 54 74 520
L6 6.01    30.2*92 47 64 830 74 100 710
L32 32.01  32*76 39 53 695 61 83 580

 

Star tube type
Series Cross kit Operating torque
540rpm    1000rpm
Kw Pk Nm Kw Pk Nm
S6 6.01    30.2*92 47 64 830 74 100 710
S7 7.01    30.2*106.5 55 75 970 87 118 830
S8 8.01    35*106.5 70 95 1240 110 150 1050
S38 38.0    38*105.6 78 105 1380 123 166 1175
S32 32.01  32*76 39 53 695 61 83 580
S36 2500   36*89 66 90 1175 102 139 975
S9 9.01    41*108 88 120 1560 140 190 1340
S10 10.01  41*118 106 145 1905 170 230 1650
S42 2600   42*104.5 79 107 1400 122 166 1175
S48 48.01  48*127 133 180 2390 205 277 1958
S50 50.01  50*118 119 162 2095 182 248 1740

 

Spline stub type
Series Cross kit Operating torque
540rpm    1000rpm
Kw Pk Nm Kw Pk Nm
ST2 2.01    23.8*61.3 15 21 270 23 31 220
ST4 4.01    27*74.6 26 35 460 40 55 380
ST5 5.01    30.2*80 35 47 620 54 74 520
ST6 6.01    30.2*92 47 64 830 74 100 710
ST7 7.01    30.2*106.5 55 75 970 87 118 830
ST8 8.01    35*106.5 70 95 1240 110 150 1050
ST38 38.10  38*105.6 78 105 1380 123 166 1175
ST42 2600   42*104.5 79 107 1400 122 166 1175
ST50 50.01  50*118 119 162 2095 182 248 1740

*** APPLICATION OF PTO DRIEVE SHAFT:

We have a variety of inspection equipments with high precision, and QA engineers who can strictly control the quality during production and before shipment.
We sincerely welcome guests from abroad for business negotiation and cooperation,in CZPT new levels of expertise and professionalism, and developing a brilliant future.

 

Color: Red, Yellow, Black, Orange
Certification: CE, ISO
Type: Pto Shaft
Material: Forged Carbon Steel C45/AISI1045, Alloy Steel
Yoke/Fork Series: Quick Release Yoke, Double Yoke, Wide Angle Joint
Equipped Clutch: Clutch FF/Sb/SA Torqure Limitter, Ra Freewheel/Ove
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What factors should be considered when selecting the right drive shaft for an application?

When selecting the right drive shaft for an application, several factors need to be considered. The choice of drive shaft plays a crucial role in ensuring efficient and reliable power transmission. Here are the key factors to consider:

1. Power and Torque Requirements:

The power and torque requirements of the application are essential considerations. It is crucial to determine the maximum torque that the drive shaft will need to transmit without failure or excessive deflection. This includes evaluating the power output of the engine or power source, as well as the torque demands of the driven components. Selecting a drive shaft with the appropriate diameter, material strength, and design is essential to ensure it can handle the expected torque levels without compromising performance or safety.

2. Operating Speed:

The operating speed of the drive shaft is another critical factor. The rotational speed affects the dynamic behavior of the drive shaft, including the potential for vibration, resonance, and critical speed limitations. It is important to choose a drive shaft that can operate within the desired speed range without encountering excessive vibrations or compromising the structural integrity. Factors such as the material properties, balance, and critical speed analysis should be considered to ensure the drive shaft can handle the required operating speed effectively.

3. Length and Alignment:

The length and alignment requirements of the application must be considered when selecting a drive shaft. The distance between the engine or power source and the driven components determines the required length of the drive shaft. In situations where there are significant variations in length or operating angles, telescopic drive shafts or multiple drive shafts with appropriate couplings or universal joints may be necessary. Proper alignment of the drive shaft is crucial to minimize vibrations, reduce wear and tear, and ensure efficient power transmission.

4. Space Limitations:

The available space within the application is an important factor to consider. The drive shaft must fit within the allocated space without interfering with other components or structures. It is essential to consider the overall dimensions of the drive shaft, including length, diameter, and any additional components such as joints or couplings. In some cases, custom or compact drive shaft designs may be required to accommodate space limitations while maintaining adequate power transmission capabilities.

5. Environmental Conditions:

The environmental conditions in which the drive shaft will operate should be evaluated. Factors such as temperature, humidity, corrosive agents, and exposure to contaminants can impact the performance and lifespan of the drive shaft. It is important to select materials and coatings that can withstand the specific environmental conditions to prevent corrosion, degradation, or premature failure of the drive shaft. Special considerations may be necessary for applications exposed to extreme temperatures, water, chemicals, or abrasive substances.

6. Application Type and Industry:

The specific application type and industry requirements play a significant role in drive shaft selection. Different industries, such as automotive, aerospace, industrial machinery, agriculture, or marine, have unique demands that need to be addressed. Understanding the specific needs and operating conditions of the application is crucial in determining the appropriate drive shaft design, materials, and performance characteristics. Compliance with industry standards and regulations may also be a consideration in certain applications.

7. Maintenance and Serviceability:

The ease of maintenance and serviceability should be taken into account. Some drive shaft designs may require periodic inspection, lubrication, or replacement of components. Considering the accessibility of the drive shaft and associated maintenance requirements can help minimize downtime and ensure long-term reliability. Easy disassembly and reassembly of the drive shaft can also be beneficial for repair or component replacement.

By carefully considering these factors, one can select the right drive shaft for an application that meets the power transmission needs, operating conditions, and durability requirements, ultimately ensuring optimal performance and reliability.

pto shaft

How do drive shafts handle variations in load and vibration during operation?

Drive shafts are designed to handle variations in load and vibration during operation by employing various mechanisms and features. These mechanisms help ensure smooth power transmission, minimize vibrations, and maintain the structural integrity of the drive shaft. Here’s a detailed explanation of how drive shafts handle load and vibration variations:

1. Material Selection and Design:

Drive shafts are typically made from materials with high strength and stiffness, such as steel alloys or composite materials. The material selection and design take into account the anticipated loads and operating conditions of the application. By using appropriate materials and optimizing the design, drive shafts can withstand the expected variations in load without experiencing excessive deflection or deformation.

2. Torque Capacity:

Drive shafts are designed with a specific torque capacity that corresponds to the expected loads. The torque capacity takes into account factors such as the power output of the driving source and the torque requirements of the driven components. By selecting a drive shaft with sufficient torque capacity, variations in load can be accommodated without exceeding the drive shaft’s limits and risking failure or damage.

3. Dynamic Balancing:

During the manufacturing process, drive shafts can undergo dynamic balancing. Imbalances in the drive shaft can result in vibrations during operation. Through the balancing process, weights are strategically added or removed to ensure that the drive shaft spins evenly and minimizes vibrations. Dynamic balancing helps to mitigate the effects of load variations and reduces the potential for excessive vibrations in the drive shaft.

4. Dampers and Vibration Control:

Drive shafts can incorporate dampers or vibration control mechanisms to further minimize vibrations. These devices are typically designed to absorb or dissipate vibrations that may arise from load variations or other factors. Dampers can be in the form of torsional dampers, rubber isolators, or other vibration-absorbing elements strategically placed along the drive shaft. By managing and attenuating vibrations, drive shafts ensure smooth operation and enhance overall system performance.

5. CV Joints:

Constant Velocity (CV) joints are often used in drive shafts to accommodate variations in operating angles and to maintain a constant speed. CV joints allow the drive shaft to transmit power even when the driving and driven components are at different angles. By accommodating variations in operating angles, CV joints help minimize the impact of load variations and reduce potential vibrations that may arise from changes in the driveline geometry.

6. Lubrication and Maintenance:

Proper lubrication and regular maintenance are essential for drive shafts to handle load and vibration variations effectively. Lubrication helps reduce friction between moving parts, minimizing wear and heat generation. Regular maintenance, including inspection and lubrication of joints, ensures that the drive shaft remains in optimal condition, reducing the risk of failure or performance degradation due to load variations.

7. Structural Rigidity:

Drive shafts are designed to have sufficient structural rigidity to resist bending and torsional forces. This rigidity helps maintain the integrity of the drive shaft when subjected to load variations. By minimizing deflection and maintaining structural integrity, the drive shaft can effectively transmit power and handle variations in load without compromising performance or introducing excessive vibrations.

8. Control Systems and Feedback:

In some applications, drive shafts may be equipped with control systems that actively monitor and adjust parameters such as torque, speed, and vibration. These control systems use sensors and feedback mechanisms to detect variations in load or vibrations and make real-time adjustments to optimize performance. By actively managing load variations and vibrations, drive shafts can adapt to changing operating conditions and maintain smooth operation.

In summary, drive shafts handle variations in load and vibration during operation through careful material selection and design, torque capacity considerations, dynamic balancing, integration of dampers and vibration control mechanisms, utilization of CV joints, proper lubrication and maintenance, structural rigidity, and, in some cases, control systems and feedback mechanisms. By incorporating these features and mechanisms, drive shafts ensure reliable and efficient power transmission while minimizing the impact of load variations and vibrations on overall system performance.

pto shaft

What benefits do drive shafts offer for different types of vehicles and equipment?

Drive shafts offer several benefits for different types of vehicles and equipment. They play a crucial role in power transmission and contribute to the overall performance, efficiency, and functionality of various systems. Here’s a detailed explanation of the benefits that drive shafts provide:

1. Efficient Power Transmission:

Drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. By connecting the engine or motor to the driven system, drive shafts efficiently transfer rotational power, allowing vehicles and equipment to perform their intended functions. This efficient power transmission ensures that the power generated by the engine is effectively utilized, optimizing the overall performance and productivity of the system.

2. Versatility:

Drive shafts offer versatility in their applications. They are used in various types of vehicles, including cars, trucks, motorcycles, and off-road vehicles. Additionally, drive shafts are employed in a wide range of equipment and machinery, such as agricultural machinery, construction equipment, industrial machinery, and marine vessels. The ability to adapt to different types of vehicles and equipment makes drive shafts a versatile component for power transmission.

3. Torque Handling:

Drive shafts are designed to handle high levels of torque. Torque is the rotational force generated by the engine or power source. Drive shafts are engineered to efficiently transmit this torque without excessive twisting or bending. By effectively handling torque, drive shafts ensure that the power generated by the engine is reliably transferred to the wheels or driven components, enabling vehicles and equipment to overcome resistance, such as heavy loads or challenging terrains.

4. Flexibility and Compensation:

Drive shafts provide flexibility and compensation for angular movement and misalignment. In vehicles, drive shafts accommodate the movement of the suspension system, allowing the wheels to move up and down independently. This flexibility ensures a constant power transfer even when the vehicle encounters uneven terrain. Similarly, in machinery, drive shafts compensate for misalignment between the engine or motor and the driven components, ensuring smooth power transmission and preventing excessive stress on the drivetrain.

5. Weight Reduction:

Drive shafts contribute to weight reduction in vehicles and equipment. Compared to other forms of power transmission, such as belt drives or chain drives, drive shafts are typically lighter in weight. This reduction in weight helps improve fuel efficiency in vehicles and reduces the overall weight of equipment, leading to enhanced maneuverability and increased payload capacity. Additionally, lighter drive shafts contribute to a better power-to-weight ratio, resulting in improved performance and acceleration.

6. Durability and Longevity:

Drive shafts are designed to be durable and long-lasting. They are constructed using materials such as steel or aluminum, which offer high strength and resistance to wear and fatigue. Drive shafts undergo rigorous testing and quality control measures to ensure their reliability and longevity. Proper maintenance, including lubrication and regular inspections, further enhances their durability. The robust construction and long lifespan of drive shafts contribute to the overall reliability and cost-effectiveness of vehicles and equipment.

7. Safety:

Drive shafts incorporate safety features to protect operators and bystanders. In vehicles, drive shafts are often enclosed within a protective tube or housing, preventing contact with moving parts and reducing the risk of injury in the event of a failure. Similarly, in machinery, safety shields or guards are commonly installed around exposed drive shafts to minimize the potential hazards associated with rotating components. These safety measures ensure the well-being of individuals operating or working in proximity to vehicles and equipment.

In summary, drive shafts offer several benefits for different types of vehicles and equipment. They enable efficient power transmission, provide versatility in various applications, handle torque effectively, offer flexibility and compensation, contribute to weight reduction, ensure durability and longevity, and incorporate safety features. By providing these advantages, drive shafts enhance the performance, efficiency, reliability, and safety of vehicles and equipment across a wide range of industries.

China Hot selling OEM ODM CE Certificated Pto Driveshaft for Agricultural Farm Machinery  China Hot selling OEM ODM CE Certificated Pto Driveshaft for Agricultural Farm Machinery
editor by CX 2023-09-25

China 1 Series Connect Triangle Tube Yokes PTO Shaft Components Driveline Parts For Farm Tractor Agriculture Machinery drive shaft coupling

Error:获取session失败,

air-compressor

How to Replace the Drive Shaft

Several different functions in a vehicle are critical to its functioning, but the driveshaft is probably the part that needs to be understood the most. A damaged or damaged driveshaft can damage many other auto parts. This article will explain how this component works and some of the signs that it may need repair. This article is for the average person who wants to fix their car on their own but may not be familiar with mechanical repairs or even driveshaft mechanics. You can click the link below for more information.

Repair damaged driveshafts

If you own a car, you should know that the driveshaft is an integral part of the vehicle’s driveline. They ensure efficient transmission of power from the engine to the wheels and drive. However, if your driveshaft is damaged or cracked, your vehicle will not function properly. To keep your car safe and running at peak efficiency, you should have it repaired as soon as possible. Here are some simple steps to replace the drive shaft.
First, diagnose the cause of the drive shaft damage. If your car is making unusual noises, the driveshaft may be damaged. This is because worn bushings and bearings support the drive shaft. Therefore, the rotation of the drive shaft is affected. The noise will be squeaks, dings or rattles. Once the problem has been diagnosed, it is time to repair the damaged drive shaft.
Professionals can repair your driveshaft at relatively low cost. Costs vary depending on the type of drive shaft and its condition. Axle repairs can range from $300 to $1,000. Labor is usually only around $200. A simple repair can cost between $150 and $1700. You’ll save hundreds of dollars if you’re able to fix the problem yourself. You may need to spend a few more hours educating yourself about the problem before handing it over to a professional for proper diagnosis and repair.
The cost of repairing a damaged driveshaft varies by model and manufacturer. It can cost as much as $2,000 depending on parts and labor. While labor costs can vary, parts and labor are typically around $70. On average, a damaged driveshaft repair costs between $400 and $600. However, these parts can be more expensive than that. If you don’t want to spend money on unnecessarily expensive repairs, you may need to pay a little more.
air-compressor

Learn how drive shafts work

While a car engine may be one of the most complex components in your vehicle, the driveshaft has an equally important job. The driveshaft transmits the power of the engine to the wheels, turning the wheels and making the vehicle move. Driveshaft torque refers to the force associated with rotational motion. Drive shafts must be able to withstand extreme conditions or they may break. Driveshafts are not designed to bend, so understanding how they work is critical to the proper functioning of the vehicle.
The drive shaft includes many components. The CV connector is one of them. This is the last stop before the wheels spin. CV joints are also known as “doughnut” joints. The CV joint helps balance the load on the driveshaft, the final stop between the engine and the final drive assembly. Finally, the axle is a single rotating shaft that transmits power from the final drive assembly to the wheels.
Different types of drive shafts have different numbers of joints. They transmit torque from the engine to the wheels and must accommodate differences in length and angle. The drive shaft of a front-wheel drive vehicle usually includes a connecting shaft, an inner constant velocity joint and an outer fixed joint. They also have anti-lock system rings and torsional dampers to help them run smoothly. This guide will help you understand the basics of driveshafts and keep your car in good shape.
The CV joint is the heart of the driveshaft, it enables the wheels of the car to move at a constant speed. The connector also helps transmit power efficiently. You can learn more about CV joint driveshafts by looking at the top 3 driveshaft questions
The U-joint on the intermediate shaft may be worn or damaged. Small deviations in these joints can cause slight vibrations and wobble. Over time, these vibrations can wear out drivetrain components, including U-joints and differential seals. Additional wear on the center support bearing is also expected. If your driveshaft is leaking oil, the next step is to check your transmission.
The drive shaft is an important part of the car. They transmit power from the engine to the transmission. They also connect the axles and CV joints. When these components are in good condition, they transmit power to the wheels. If you find them loose or stuck, it can cause the vehicle to bounce. To ensure proper torque transfer, your car needs to stay on the road. While rough roads are normal, bumps and bumps are common.
air-compressor

Common signs of damaged driveshafts

If your vehicle vibrates heavily underneath, you may be dealing with a faulty propshaft. This issue limits your overall control of the vehicle and cannot be ignored. If you hear this noise frequently, the problem may be the cause and should be diagnosed as soon as possible. Here are some common symptoms of a damaged driveshaft. If you experience this noise while driving, you should have your vehicle inspected by a mechanic.
A clanging sound can also be one of the signs of a damaged driveshaft. A ding may be a sign of a faulty U-joint or center bearing. This can also be a symptom of worn center bearings. To keep your vehicle safe and functioning properly, it is best to have your driveshaft inspected by a certified mechanic. This can prevent serious damage to your car.
A worn drive shaft can cause difficulty turning, which can be a major safety issue. Fortunately, there are many ways to tell if your driveshaft needs service. The first thing you can do is check the u-joint itself. If it moves too much or too little in any direction, it probably means your driveshaft is faulty. Also, rust on the bearing cap seals may indicate a faulty drive shaft.
The next time your car rattles, it might be time for a mechanic to check it out. Whether your vehicle has a manual or automatic transmission, the driveshaft plays an important role in your vehicle’s performance. When one or both driveshafts fail, it can make the vehicle unsafe or impossible to drive. Therefore, you should have your car inspected by a mechanic as soon as possible to prevent further problems.
Your vehicle should also be regularly lubricated with grease and chain to prevent corrosion. This will prevent grease from escaping and causing dirt and grease to build up. Another common sign is a dirty driveshaft. Make sure your phone is free of debris and in good condition. Finally, make sure the driveshaft chain and cover are in place. In most cases, if you notice any of these common symptoms, your vehicle’s driveshaft should be replaced.
Other signs of a damaged driveshaft include uneven wheel rotation, difficulty turning the car, and increased drag when trying to turn. A worn U-joint also inhibits the ability of the steering wheel to turn, making it more difficult to turn. Another sign of a faulty driveshaft is the shuddering noise the car makes when accelerating. Vehicles with damaged driveshafts should be inspected as soon as possible to avoid costly repairs.

China 1 Series Connect Triangle Tube Yokes PTO Shaft Components Driveline Parts For Farm Tractor Agriculture Machinery     drive shaft coupling	China 1 Series Connect Triangle Tube Yokes PTO Shaft Components Driveline Parts For Farm Tractor Agriculture Machinery     drive shaft coupling
editor by CX 2023-04-26

China TA700.372g-01a Gear Shaft For Foton Lovol agricultural machinery & equipment Farm Tractors drive shaft ends

Situation: New
Warranty: 3 months
Relevant Industries: Equipment Repair Retailers, Farms
Bodyweight (KG): 2.5 KG
Showroom Location: None
Video outgoing-inspection: Not Obtainable
Equipment Test Report: Not Obtainable
Marketing Sort: New Merchandise 2571
Variety: Shafts
Use: Tractors
After Guarantee Provider: Spare elements
Packaging Particulars: opp

Specification

itemGear Shaft
ConditionNew
Place of OriginChina,ZheJiang
Package dimensions(CM)30*ten*10
Gross weight(KG)2.5
Suggest Products Company Profile Certifications Packing & Shipping and delivery FAQ 1. who are we?We are based mostly in ZheJiang , China, start off from 2018,promote to Africa(forty.00%),South Asia(twenty.00%),Jap Asia(twenty.00%),Jap Europe(10.00%),North The usa(ten.00%). There are overall about 5-ten people in our workplace.2. how can we guarantee top quality?Always a pre-generation sample prior to mass productionAlways last Inspection just before shipment3.what can you get from us?Lovol tractor components,Quanchai components,Foton tractor portion,Weichai areas,tractor engine parts4. why ought to you buy from us not from other suppliers?Our firm is engaged in CZPT tractor elements, with more than 10 a long time of support knowledge at home and overseas, with excellent expert understanding and sufficient stock.5. what providers can we supply?Acknowledged Delivery Phrases: FOB,CFR,CIF,EXW,Specific Delivery;Accepted Payment Currency:USD,EUR,HKD,CNYAccepted Payment Variety: T/T,L/C,D/P D/A,MoneyGram,Credit Card,PayPal,Western Union,Money,EscrowLanguage Spoken:English,Chinese

Why Checking the Drive Shaft is Important

If you hear clicking noises while driving, your driveshaft may need repair. An experienced mechanic can tell if the noise is coming from one side or both sides. This problem is usually related to the torque converter. Read on to learn why it’s so important to have your driveshaft inspected by an auto mechanic. Here are some symptoms to look for. Clicking noises can be caused by many different things. You should first check if the noise is coming from the front or the rear of the vehicle.
air-compressor

hollow drive shaft

Hollow driveshafts have many benefits. They are light and reduce the overall weight of the vehicle. The largest manufacturer of these components in the world is CZPT. They also offer lightweight solutions for various applications, such as high-performance axles. CZPT driveshafts are manufactured using state-of-the-art technology. They offer excellent quality at competitive prices.
The inner diameter of the hollow shaft reduces the magnitude of the internal forces, thereby reducing the amount of torque transmitted. Unlike solid shafts, hollow shafts are getting stronger. The material inside the hollow shaft is slightly lighter, which further reduces its weight and overall torque. However, this also increases its drag at high speeds. This means that in many applications hollow driveshafts are not as efficient as solid driveshafts.
A conventional hollow drive shaft consists of a first rod 14 and a second rod 14 on both sides. The first rod is connected with the second rod, and the second rod extends in the rotation direction. The two rods are then friction welded to the central area of ​​the hollow shaft. The frictional heat generated during the relative rotation helps to connect the two parts. Hollow drive shafts can be used in internal combustion engines and environmentally-friendly vehicles.
The main advantage of a hollow driveshaft is weight reduction. The splines of the hollow drive shaft can be designed to be smaller than the outside diameter of the hollow shaft, which can significantly reduce weight. Hollow shafts are also less likely to jam compared to solid shafts. Hollow driveshafts are expected to eventually occupy the world market for automotive driveshafts. Its advantages include fuel efficiency and greater flexibility compared to solid prop shafts.

Cardan shaft

Cardan shafts are a popular choice in industrial machinery. They are used to transmit power from one machine to another and are available in a variety of sizes and shapes. They are available in a variety of materials, including steel, copper, and aluminum. If you plan to install one of these shafts, it is important to know the different types of Cardan shafts available. To find the best option, browse the catalog.
Telescopic or “Cardan” prop shafts, also known as U-joints, are ideal for efficient torque transfer between the drive and output system. They are efficient, lightweight, and energy-efficient. They employ advanced methods, including finite element modeling (FEM), to ensure maximum performance, weight, and efficiency. Additionally, the Cardan shaft has an adjustable length for easy repositioning.
Another popular choice for driveshafts is the Cardan shaft, also known as a driveshaft. The purpose of the driveshaft is to transfer torque from the engine to the wheels. They are typically used in high-performance car engines. Some types are made of brass, iron, or steel and have unique surface designs. Cardan shafts are available in inclined and parallel configurations.
Single Cardan shafts are a common replacement for standard Cardan shafts, but if you are looking for dual Cardan shafts for your vehicle, you will want to choose the 1310 series. This type is great for lifted jeeps and requires a CV-compatible transfer case. Some even require axle spacers. The dual Cardan shafts are also designed for lifts, which means it’s a good choice for raising and lowering jeeps.
air-compressor

universal joint

Cardan joints are a good choice for drive shafts when operating at a constant speed. Their design allows a constant angular velocity ratio between the input and output shafts. Depending on the application, the recommended speed limit may vary depending on the operating angle, transmission power, and application. These recommendations must be based on pressure. The maximum permissible speed of the drive shaft is determined by determining the angular acceleration.
Because gimbal joints don’t require grease, they can last a long time but eventually fail. If they are poorly lubricated or dry, they can cause metal-to-metal contact. The same is true for U-joints that do not have oil filling capability. While they have a long lifespan, it can be difficult to spot warning signs that could indicate impending joint failure. To avoid this, check the drive shaft regularly.
U-joints should not exceed seventy percent of their lateral critical velocity. However, if this speed is exceeded, the part will experience unacceptable vibration, reducing its useful life. To determine the best U-joint for your application, please contact your universal joint supplier. Typically, lower speeds do not require balancing. In these cases, you should consider using a larger pitch diameter to reduce axial force.
To minimize the angular velocity and torque of the output shaft, the two joints must be in phase. Therefore, the output shaft angular displacement does not completely follow the input shaft. Instead, it will lead or lag. Figure 3 illustrates the angular velocity variation and peak displacement lead of the gimbal. The ratios are shown below. The correct torque for this application is 1360 in-Ibs.

Refurbished drive shaft

Refurbished driveshafts are a good choice for a number of reasons. They are cheaper than brand new alternatives and generally just as reliable. Driveshafts are essential to the function of any car, truck, or bus. These parts are made of hollow metal tubes. While this helps reduce weight and expense, it is vulnerable to external influences. If this happens, it may crack or bend. If the shaft suffers this type of damage, it can cause serious damage to the transmission.
A car’s driveshaft is a critical component that transmits torque from the engine to the wheels. A1 Drive Shaft is a global supplier of automotive driveshafts and related components. Their factory has the capability to refurbish and repair almost any make or model of driveshafts. Refurbished driveshafts are available for every make and model of vehicle. They can be found on the market for a variety of vehicles, including passenger cars, trucks, vans, and SUVs.
Unusual noises indicate that your driveshaft needs to be replaced. Worn U-joints and bushings can cause excessive vibration. These components cause wear on other parts of the drivetrain. If you notice any of these symptoms, please take your vehicle to the AAMCO Bay Area Center for a thorough inspection. If you suspect damage to the driveshaft, don’t wait another minute – it can be very dangerous.
air-compressor

The cost of replacing the drive shaft

The cost of replacing a driveshaft varies, but on average, this repair costs between $200 and $1,500. While this price may vary by vehicle, the cost of parts and labor is generally equal. If you do the repair yourself, you should know how much the parts and labor will cost before you start work. Some parts can be more expensive than others, so it’s a good idea to compare the cost of several locations before deciding where to go.
If you notice any of these symptoms, you should seek a repair shop immediately. If you are still not sure if the driveshaft is damaged, do not drive the car any distance until it is repaired. Symptoms to look for include lack of power, difficulty moving the car, squeaking, clanking, or vibrating when the vehicle is moving.
Parts used in drive shafts include center support bearings, slip joints, and U-joints. The price of the driveshaft varies by vehicle and may vary by model of the same year. Also, different types of driveshafts require different repair methods and are much more expensive. Overall, though, a driveshaft replacement costs between $300 and $1,300. The process may take about an hour, depending on the vehicle model.
Several factors can lead to the need to replace the drive shaft, including bearing corrosion, damaged seals, or other components. In some cases, the U-joint indicates that the drive shaft needs to be replaced. Even if the bearings and u-joints are in good condition, they will eventually break and require the replacement of the drive shaft. However, these parts are not cheap, and if a damaged driveshaft is a symptom of a bigger problem, you should take the time to replace the shaft.

China TA700.372g-01a Gear Shaft For Foton Lovol agricultural machinery & equipment Farm Tractors     drive shaft ends	China TA700.372g-01a Gear Shaft For Foton Lovol agricultural machinery & equipment Farm Tractors     drive shaft ends
editor by czh

in Izmir Turkey sales price shop near me near me shop factory supplier CE Approved Farm Machinery 4-Disc Tractor Rotary Disc Mower manufacturer best Cost Custom Cheap wholesaler

  in Izmir Turkey  sales   price   shop   near me   near me shop   factory   supplier CE Approved Farm Machinery 4-Disc Tractor Rotary Disc Mower manufacturer   best   Cost   Custom   Cheap   wholesaler

In the meantime, our products are created according to substantial top quality expectations, and complying with the international innovative normal conditions. specialize in electricity transmission goods, CATV items, mechanical seal, hydraulic and Pheumatic, and marketing merchandise. In this way, our merchandise have continued to obtain marketplace acceptance and customers pleasure more than the past couple of several years. DRM series Disc Mower

This mower is braced heavier on the end than other disc mowers and has two bar raise EPTs to insure the cutter bar floats very easily on the ground.

EPTTland EPTTry enhanced the stXiHu (West EPT) Dis.Hu (West EPT) Dis.rd layout for disc mowers with innovations that generate substantial chopping overall performance whilst reducing upkeep wants. Each and every one functions a bi-shaft style with every single disc self-contained and pre-packed with its very own set of EPTs, bearings and lubricants to boost working existence. Insert in heavier chopping discs, super-sized skid shoes and other characteristics, and you’ve acquired a disc mower that will get the work carried out.

Major Attributes

one Disc Mower Two large-top quality, reversible knives per disc on 4, five or 6 oval slicing discs.
2 Rock guards and skid shoes to shield discs and have the cutterbar above uneven ground.
3 Rotary Mower An enclosed EPT-EPTn cutterbar that offers many years of reputable provider
4 A 540-rpm PTO EPTline with overrunning clutch to shield the tractor EPTline.
5 Adjustable flotation EPTs for modifying cutterbar ground strain.
six A EPT-loaded breakaway latch that shields the cutterbar.
7 A solitary-performing EPT cylinEPTTthat very easily lifts the cutterbar following every single pass.
eight An articulation joint that makes it possible for mowers to function over and below horizontal.

Model EPTT-1300 EPTT-1700 EPTT-2100 EPTT-2500
Match EPTT 20-50hp 35-80hp forty-80hp fifty-100hp
Operating width 1.3m one.seven two.1 2.five
Quantity of disc 2 4 5 six
Operating velocity 4-10km/h 4-10km/h four-10km/h 4-10km/h

Solution Specifics:
A rotating modular knife blade gives comprehensive and uniform crop chopping.

one. Every disc property has 2 blades.
two. The center discs has lubricating hole for straightforward routine maintenance.
three. Blade rotate at 3000rpm.

Hassle-cost-free Transport
one. The EPTT will be in compact deal while in transport situation.
2. The cutter bar transportation lock automatically engages for a safe keep.
3. The cutter bar is EPT-balanced from conclude to conclude: allows the mower to glide over uneven terrain efficiently and can be modified for all situations.

Modular Cutter bar
one. Makes certain swift mowing.
two. Outcomes in exceptional crop movement that minimizes streaking.
three. EPT-duty body and rugged cover use a cantiEPTed design and style for smooth crop movement throughout cutter bar.
four. Cutter bar EPT security stXiHu (West EPT) Dis.Hu (West EPT) Dis.rd.
five. Handles most any crop situation, from wet discipline to downed crops.

EPT Maintenance amp Benefits
1. Reversible knife blades alter speedily without boosting the cutter bed.
2. If an object is sEPT during operation, a EPT-loaded cutter mattress breakaway latch releases.
three. A hefty-duty, puncture-resistant curtain provides protection for operator and bystanders.

Why select us?
1 The quality is confirmed owing to strong technical assist ,initial class ingredient ,EPTd generation line and rigid high quality management technique.
two Be leading Skilled in EPTT market place for a lot more than 12 several years, EPTT Famous Export Model advisable by CCCME (EPTT Chamber of Commerce for EPTTort and Export of EPTTry and EPT EPT)

Following Offer Service:
EPT Areas Guarantee Actions:

Supplier EPT Part Warehouse.
a hundred% unique spare areas guarantee great high quality.
Bar-code technique adopted in the EPTT approach assures precision and promptness.
Skilled and exact bundle and EPT assure secure and relieved transportation.

EPTnical Assistance:

The EPTT process EPTT assistance addresses on sale and right after-sale service.
Practically 50 categories of specialized support components for 4 sequence merchandise.
Various assist approaches like upkeep manual, wall chart, procedure instruction disk and so on.
Multi-language components in EPTT, EPT, Russian, Portuguese, Spanish and Arabic respectively.

  in Izmir Turkey  sales   price   shop   near me   near me shop   factory   supplier CE Approved Farm Machinery 4-Disc Tractor Rotary Disc Mower manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Izmir Turkey  sales   price   shop   near me   near me shop   factory   supplier CE Approved Farm Machinery 4-Disc Tractor Rotary Disc Mower manufacturer   best   Cost   Custom   Cheap   wholesaler

Best sales made in China – replacement parts – PTO shaft manufacturer & factory 210HP land pride pto shaft parts Farm Field Farming Agriculture Machinery Agri Wheeled Tractor with ce certificate top quality low price

We – EPG Team the biggest agricultural gearbox and pto manufacturing unit in China with 5 different branches. For a lot more information: Cellular/whatsapp/telegram/Kakao us at: 0086-13083988828

Best  sales  made in China - replacement parts - PTO shaft manufacturer & factory 210HP   land pride pto shaft parts Farm Field Farming Agriculture Machinery Agri Wheeled Tractor with ce certificate top quality low price

motor travel shaft Our bush hog pto areas business sye driveshaft has e46 manual driveshaft sound w211 4matic front drive shaft financial pto shaft lock pin substitution energy, 2007 nissan murano generate shaft builds substitute pto shafts up are all pto shafts the exact same size a tractor pto adapter technician group contingent with substantial top quality, possesses the manufacturing assembly line of technicalization in China and excellent technique examining on solution good quality and operates advertising and marketing networks throughout the nation.

210HP Farm/Field/Farming/Agriculture Equipment/Agri/Wheeled Tractor

1.YTO/Weichai/Yuchai Motor
two.Push Wheel:4wd(4*4)
3.Four-stroke engines with large torque reserve.
4.Adju EPT front and rear tracks.
5.Total hydraulic steering.

Specialized Parameters

Tangland TL2104 Tractor
Item Unit Specs
Whole 
Vehicle 
Manufacturer / Tangland
Product / TL2104
Generate / four*four
Purpose / Agricultural
Overall dimension (L*W*H)   5350×2320×3140
Wheelbase  mm 2898
Tread(Entrance/Rear) mm 1650,1760(1778,1862,1888,1972,1990,2100)/1650-2368,1750
Tread adjustment method / Rim flip / Rim flip + slide adjustable
Min.GroundClearance(mm) mm 480
Weight kg 6600
Front / Rear Axle Mass kg 2610/3990
Maximum counterweight (Front / Rear) kg five hundred/600
Number of gears (forward / Backward / Craw) / 32F+24R(Optional16F+12R)
Engine and clutch connection / Immediate
Starting method / Electric start
PTO(RPM) rpm 540/a thousand
PTO Shaft Spline  mm
PTO Shaft Output kW ≥130.9
Tyre(Front/Rear) / sixteen.9-28/20.8-38
Clutch Type / Single blade,dry,single function, dog-engagement, Air aid hydrostatic pedal driven
Gear Box / Straight and helical teeth gear transmission, composed,
 Synchronizer and meshing gear shift, side operation.
Max. Traction kN ≥60
Cabin Product / T15040045001
Sort / Safety cab
Motor Brand name / Weichai Deutz engine
Type / Inline, four-stroke, supercharged cold, high pressure common rail
Model / WP6G210E330
Aspiration  / Increase
Cylinder PCS six
Bore * stroke  mm 105×130
Displacement L six.75
Compression ratio / 18:01
Calibration power kW 154
Calibration speed r/min 2200
Fuel injection pump type, model / BOSCH/WPCPN2
Nozzle type, model / BOSCH/WPCRIN2
Air filter type, model / 93 dust filter
Starter model / M100R2004SE
Cooling system type / Water Cooled

Tractor Features
1.Gasoline use attain upto 1 liter/hour diesel.
2. Differential lock avoid rear whee EPT skidding when climbing, working in paddy land and wet weather conditions.
three.Equip with double velocity of PTO shaft 540/760 rpm. Adapted to distinct subject variety.
4.Adopt entire hydraulic steering, unbiased gas tank, effortless operating and higher mobility. 
5.Adju EPT front and rear tracks meet agricultural demands of various locations. Added-big drinking water tank and substantial ability upkeep-totally free battery make the equipment with greatest heat-dispersion and beginning performance.
6.Can adopt to a variety of implements,such as plough,disc plough,ratory tiller,disc harrow,and so forth
 

Our Principal Items

Tractor
18HP-240HP, 2WD and Four wheel drive, belt generate and shaft generate tractor
1. Appropriate for highway transportation, various farmland operations:  layout different method EPT in accordance to diverse terrains these kinds of as paddy fields, dry land, mountains, orchards, hills, and so on.
2. Can be outfitted with all sorts of mechanical products and agricultural equipment: entrance loader, rear excavator, bulldozer, snowplow, and many others. plow, hoe, rotary tiller, lawn mower, and many others.

Farm Implements
Disc Plough, Disc Harrow,Mover/Slasher,Farm Trailer,Potato Planter,Potato Harvester,Land Leveller, Cultivator,Rotary Tiller/Rotocultivator,Share Plough,Soil Ridger,Seeder,Sprayer, Publish Gap Digger,Raker,Hay Rake,Seedbed Machine,Corn Thresher,Ditcher, Rock Picker,Swather and and so forth..

 

Packaging&Delivery

 

Support
 
Pre-sales provider
one, 24 hrs online .Your inquiry will be rapid reply  by e mail . 
 
2,Professionally and patiently introduction,detai EPT pictures and operating movie to show device .
3,Visting our manufacturing unit.
 

Provider on product sales
one,Examination each equipment and examine the machine severely . 
two,Send the machine image which you get , then packing it with stHangZhourd export deal following you verify the device is okay .
3,Shipping:If ship by sea .following delivery to seaport .Will notify you the delivery time and arrival time . Finally, ship all original files to you by Express. We will notify you the monitoring number after we post the paperwork.

Following-revenue services
one, 24 hours online to fix any issue . Supply you English handbook guide and specialized help , maintain and install online video to assist you remedy the difficulty, or dispatch worker to your manufacturing facility.
two Training how to set up the device, training how to use, sustain and repair the device.

 
FAQ
one. What is the voltage/phase for this machine ?
220V 50Hz/single period ,380V 50Hz/a few phase .We also could produce in accordance to customer’s need.
two. What is your conditions of payment?
T/T thirty% as deposit, and &70% ahead of shipping. We will display you the pictures of the merchandise and deals before you spend the equilibrium.
3. What your phrases of shipping and delivery?
EXW,FOB,CFR,CIF,DAF.
four. How about your shipping time?
Typically, it will take about 13 times soon after receipt of deposit payment. The certain delivery time relies upon on the items and the quantity of your buy.
five. What is actually your MOQ?
1 set
six. How ought to I do if meet up with some problems although using?
We can supply English manual e-book and also get a video for displaying how to take care of the problems or dispatch our employee to your manufacturing unit.

 
 

 

Best  sales  made in China - replacement parts - PTO shaft manufacturer & factory 210HP   land pride pto shaft parts Farm Field Farming Agriculture Machinery Agri Wheeled Tractor with ce certificate top quality low price