Tag Archives: shaft for jeep

China Hot selling 938-269 52111596AA; High-Quality Drive Shaft for Jeep Liberty 2005-2007

Product Description

As a professional manufacturer for propeller shaft, we have +1000 items for all kinds of car. At present, our products are mainly sold in North America, Europe, Australia, South Korea, the Middle East and Southeast Asia and other regions, applicable models are European cars, American cars, Japanese and Korean cars, etc.

 

Our advantage:

 

1. Full range of products

2. MOQ qty: 1pcs/items

3. Delivery on time

4: Warranty: 1 YEAR
 

OE NUMBER 52111594AA;52111596AA;52111596AB
TYPE JEEP LIBERTY 2005-2007
MATERIAL STEEL
BALANCE STHangZhouRD G16  3200RPM
   

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1years
Condition: New
Color: Black
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

How do drive shafts ensure efficient power transfer while maintaining balance?

Drive shafts employ various mechanisms to ensure efficient power transfer while maintaining balance. Efficient power transfer refers to the ability of the drive shaft to transmit rotational power from the source (such as an engine) to the driven components (such as wheels or machinery) with minimal energy loss. Balancing, on the other hand, involves minimizing vibrations and eliminating any uneven distribution of mass that can cause disturbances during operation. Here’s an explanation of how drive shafts achieve both efficient power transfer and balance:

1. Material Selection:

The material selection for drive shafts is crucial for maintaining balance and ensuring efficient power transfer. Drive shafts are commonly made from materials such as steel or aluminum alloys, chosen for their strength, stiffness, and durability. These materials have excellent dimensional stability and can withstand the torque loads encountered during operation. By using high-quality materials, drive shafts can minimize deformation, flexing, and imbalances that could compromise power transmission and generate vibrations.

2. Design Considerations:

The design of the drive shaft plays a significant role in both power transfer efficiency and balance. Drive shafts are engineered to have appropriate dimensions, including diameter and wall thickness, to handle the anticipated torque loads without excessive deflection or vibration. The design also considers factors such as the length of the drive shaft, the number and type of joints (such as universal joints or constant velocity joints), and the use of balancing weights. By carefully designing the drive shaft, manufacturers can achieve optimal power transfer efficiency while minimizing the potential for imbalance-induced vibrations.

3. Balancing Techniques:

Balance is crucial for drive shafts as any imbalance can cause vibrations, noise, and accelerated wear. To maintain balance, drive shafts undergo various balancing techniques during the manufacturing process. Static and dynamic balancing methods are employed to ensure that the mass distribution along the drive shaft is uniform. Static balancing involves adding counterweights at specific locations to offset any weight imbalances. Dynamic balancing is performed by spinning the drive shaft at high speeds and measuring any vibrations. If imbalances are detected, additional adjustments are made to achieve a balanced state. These balancing techniques help minimize vibrations and ensure smooth operation of the drive shaft.

4. Universal Joints and Constant Velocity Joints:

Drive shafts often incorporate universal joints (U-joints) or constant velocity (CV) joints to accommodate misalignment and maintain balance during operation. U-joints are flexible joints that allow for angular movement between shafts. They are typically used in applications where the drive shaft operates at varying angles. CV joints, on the other hand, are designed to maintain a constant velocity of rotation and are commonly used in front-wheel-drive vehicles. By incorporating these joints, drive shafts can compensate for misalignment, reduce stress on the shaft, and minimize vibrations that can negatively impact power transfer efficiency and balance.

5. Maintenance and Inspection:

Regular maintenance and inspection of drive shafts are essential for ensuring efficient power transfer and balance. Periodic checks for wear, damage, or misalignment can help identify any issues that may affect the drive shaft’s performance. Lubrication of the joints and proper tightening of fasteners are also critical for maintaining optimal operation. By adhering to recommended maintenance procedures, any imbalances or inefficiencies can be addressed promptly, ensuring continued efficient power transfer and balance.

In summary, drive shafts ensure efficient power transfer while maintaining balance through careful material selection, thoughtful design considerations, balancing techniques, and the incorporation of flexible joints. By optimizing these factors, drive shafts can transmit rotational power smoothly and reliably, minimizing energy losses and vibrations that can impact performance and longevity.

pto shaft

How do drive shafts enhance the performance of automobiles and trucks?

Drive shafts play a significant role in enhancing the performance of automobiles and trucks. They contribute to various aspects of vehicle performance, including power delivery, traction, handling, and overall efficiency. Here’s a detailed explanation of how drive shafts enhance the performance of automobiles and trucks:

1. Power Delivery: Drive shafts are responsible for transmitting power from the engine to the wheels, enabling the vehicle to move forward. By efficiently transferring power without significant losses, drive shafts ensure that the engine’s power is effectively utilized, resulting in improved acceleration and overall performance. Well-designed drive shafts with minimal power loss contribute to the vehicle’s ability to deliver power to the wheels efficiently.

2. Torque Transfer: Drive shafts facilitate the transfer of torque from the engine to the wheels. Torque is the rotational force that drives the vehicle forward. High-quality drive shafts with proper torque conversion capabilities ensure that the torque generated by the engine is effectively transmitted to the wheels. This enhances the vehicle’s ability to accelerate quickly, tow heavy loads, and climb steep gradients, thereby improving overall performance.

3. Traction and Stability: Drive shafts contribute to the traction and stability of automobiles and trucks. They transmit power to the wheels, allowing them to exert force on the road surface. This enables the vehicle to maintain traction, especially during acceleration or when driving on slippery or uneven terrain. The efficient power delivery through the drive shafts enhances the vehicle’s stability by ensuring balanced power distribution to all wheels, improving control and handling.

4. Handling and Maneuverability: Drive shafts have an impact on the handling and maneuverability of vehicles. They help establish a direct connection between the engine and the wheels, allowing for precise control and responsive handling. Well-designed drive shafts with minimal play or backlash contribute to a more direct and immediate response to driver inputs, enhancing the vehicle’s agility and maneuverability.

5. Weight Reduction: Drive shafts can contribute to weight reduction in automobiles and trucks. Lightweight drive shafts made from materials such as aluminum or carbon fiber-reinforced composites reduce the overall weight of the vehicle. The reduced weight improves the power-to-weight ratio, resulting in better acceleration, handling, and fuel efficiency. Additionally, lightweight drive shafts reduce the rotational mass, allowing the engine to rev up more quickly, further enhancing performance.

6. Mechanical Efficiency: Efficient drive shafts minimize energy losses during power transmission. By incorporating features such as high-quality bearings, low-friction seals, and optimized lubrication, drive shafts reduce friction and minimize power losses due to internal resistance. This enhances the mechanical efficiency of the drivetrain system, allowing more power to reach the wheels and improving overall vehicle performance.

7. Performance Upgrades: Drive shaft upgrades can be popular performance enhancements for enthusiasts. Upgraded drive shafts, such as those made from stronger materials or with enhanced torque capacity, can handle higher power outputs from modified engines. These upgrades allow for increased performance, such as improved acceleration, higher top speeds, and better overall driving dynamics.

8. Compatibility with Performance Modifications: Performance modifications, such as engine upgrades, increased power output, or changes to the drivetrain system, often require compatible drive shafts. Drive shafts designed to handle higher torque loads or adapt to modified drivetrain configurations ensure optimal performance and reliability. They enable the vehicle to effectively harness the increased power and torque, resulting in improved performance and responsiveness.

9. Durability and Reliability: Robust and well-maintained drive shafts contribute to the durability and reliability of automobiles and trucks. They are designed to withstand the stresses and loads associated with power transmission. High-quality materials, appropriate balancing, and regular maintenance help ensure that drive shafts operate smoothly, minimizing the risk of failures or performance issues. Reliable drive shafts enhance the overall performance by providing consistent power delivery and minimizing downtime.

10. Compatibility with Advanced Technologies: Drive shafts are evolving in tandem with advancements in vehicle technologies. They are increasingly being integrated with advanced systems such as hybrid powertrains, electric motors, and regenerative braking. Drive shafts designed to work seamlessly with these technologies maximize their efficiency and performance benefits, contributing to improved overall vehicle performance.

In summary, drive shafts enhance the performance of automobiles and trucks by optimizing power delivery, facilitating torque transfer, improving traction and stability, enhancing handling and maneuverability, reducing weight, increasing mechanical efficiency, enabling compatibility with performance upgrades and advanced technologies, and ensuring durability and reliability. They play a crucial role in ensuring efficient power transmission, responsive acceleration, precise handling, and overall improved performance of vehicles.

pto shaft

How do drive shafts contribute to transferring rotational power in various applications?

Drive shafts play a crucial role in transferring rotational power from the engine or power source to the wheels or driven components in various applications. Whether it’s in vehicles or machinery, drive shafts enable efficient power transmission and facilitate the functioning of different systems. Here’s a detailed explanation of how drive shafts contribute to transferring rotational power:

1. Vehicle Applications:

In vehicles, drive shafts are responsible for transmitting rotational power from the engine to the wheels, enabling the vehicle to move. The drive shaft connects the gearbox or transmission output shaft to the differential, which further distributes the power to the wheels. As the engine generates torque, it is transferred through the drive shaft to the wheels, propelling the vehicle forward. This power transfer allows the vehicle to accelerate, maintain speed, and overcome resistance, such as friction and inclines.

2. Machinery Applications:

In machinery, drive shafts are utilized to transfer rotational power from the engine or motor to various driven components. For example, in industrial machinery, drive shafts may be used to transmit power to pumps, generators, conveyors, or other mechanical systems. In agricultural machinery, drive shafts are commonly employed to connect the power source to equipment such as harvesters, balers, or irrigation systems. Drive shafts enable these machines to perform their intended functions by delivering rotational power to the necessary components.

3. Power Transmission:

Drive shafts are designed to transmit rotational power efficiently and reliably. They are capable of transferring substantial amounts of torque from the engine to the wheels or driven components. The torque generated by the engine is transmitted through the drive shaft without significant power losses. By maintaining a rigid connection between the engine and the driven components, drive shafts ensure that the power produced by the engine is effectively utilized in performing useful work.

4. Flexible Coupling:

One of the key functions of drive shafts is to provide a flexible coupling between the engine/transmission and the wheels or driven components. This flexibility allows the drive shaft to accommodate angular movement and compensate for misalignment between the engine and the driven system. In vehicles, as the suspension system moves or the wheels encounter uneven terrain, the drive shaft adjusts its length and angle to maintain a constant power transfer. This flexibility helps prevent excessive stress on the drivetrain components and ensures smooth power transmission.

5. Torque and Speed Transmission:

Drive shafts are responsible for transmitting both torque and rotational speed. Torque is the rotational force generated by the engine or power source, while rotational speed is the number of revolutions per minute (RPM). Drive shafts must be capable of handling the torque requirements of the application without excessive twisting or bending. Additionally, they need to maintain the desired rotational speed to ensure the proper functioning of the driven components. Proper design, material selection, and balancing of the drive shafts contribute to efficient torque and speed transmission.

6. Length and Balance:

The length and balance of drive shafts are critical factors in their performance. The length of the drive shaft is determined by the distance between the engine or power source and the driven components. It should be appropriately sized to avoid excessive vibrations or bending. Drive shafts are carefully balanced to minimize vibrations and rotational imbalances, which can affect the overall performance, comfort, and longevity of the drivetrain system.

7. Safety and Maintenance:

Drive shafts require proper safety measures and regular maintenance. In vehicles, drive shafts are often enclosed within a protective tube or housing to prevent contact with moving parts, reducing the risk of injury. Safety shields or guards may also be installed around exposed drive shafts in machinery to protect operators from potential hazards. Regular maintenance includes inspecting the drive shaft for wear, damage, or misalignment, and ensuring proper lubrication of the U-joints. These measures help prevent failures, ensure optimal performance, and extend the service life of the drive shaft.

In summary, drive shafts play a vital role in transferring rotational power in various applications. Whether in vehicles or machinery, drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. They provide a flexible coupling, handle torque and speed transmission, accommodate angular movement, and contribute to the safety and maintenance of the system. By effectively transferring rotational power, drive shafts facilitate the functioning and performance of vehicles and machinery in numerous industries.

China Hot selling 938-269 52111596AA; High-Quality Drive Shaft for Jeep Liberty 2005-2007  China Hot selling 938-269 52111596AA; High-Quality Drive Shaft for Jeep Liberty 2005-2007
editor by CX 2024-05-09

China supplier Auto Part Axle Shaft Rear Front CV Axle Shaft Drive Shafts for Jeep CZPT Dodge Chevrolet American Car

Product Description

As a professional manufacturer for propeller shaft, we have +800 items for all kinds of car, main suitable
for AMERICA & EUROPE market.

 

Our advantage:

 

1. Full range of products

2. MOQ qty: 5pcs/items

3. Delivery on time

4: Warranty: 1 YEAR

5. Develope new items: FREE

 

Brand Name

KOWA DRIVE SHAFT

Item name

OEM

Car maker

For all japanese/korean/european/american car

Moq

5pcs

Guarantee

12 months

sample

Available if have stock

Price

Send inquiry to get lastest price

BOX/QTY

1PCS/Bag 4PCS /CTNS

For some items, we have stock, small order (+3000USD) is welcome.

 

The following items are some of drive shafts, If you need more information, pls contact us for ASAP.
 

For Japanese Car
for TOYOTA for TOYOTA
43420-57170 43420-57180 43410-0W081 43420-0W080
43410-57120 43420-57190 43410-0W091 43420-0W090
43410-57130 43420-57120 43410-0W100 43420-0W110
43410-57150 43420-02B10 43410-0W110 43420-0W160
43410-06221 43420-02B11 43410-0W140 43420-32161
43410-06231 43420-02B60 43410-0W150 43420-33250
43410-06460 43420-02B61 43410-0W180 43420-33280
43410-06570 43420-02B62 43410-12410 43420-48090
43410-06580 43420-06221 43410-33280 43420-48091
43410-066-90 43420-06231 43410-33290 43430OK571
43410-06750 43420-06460 43410-33330 66-5245
43410-06780 43420-06490 43410-48070 66-5247
43410-06A40 43420-06500 43410-48071 43420-57150
43410-06A50 43420- 0571 0 43410-0W061 43420-0W061
43410-07070 43420-06610 43410-0W071 43420-0W071
for Acura for LEXUS
44305STKA00 66-4198 43410-06200 43410-06480
44305STKA01 66-4261 43410-06450 43410-06560
44305SZPA00 66-4262 66-5265  
44306STKA00 66-4270 for MITSUBISHI
44306STKA01 66-4271 3815A309 3815A310
44306SZPA00      
for Honda for MAZDA
44571S1571 44306S3VA61 5L8Z3A428AB GG052550XD
44011S1571 44306S3VA62 5L8Z3A428DA GG052560XE
44305S2HN50 44306S9VA51 66-2090 GG362550XA
44305SCVA50 44306S9VA71 6L8Z3A428A YL8Z3A427AA
44305SCVA51 44306SCVA50 9L8Z3A427B YL8Z3A427BA
44305SCVA90 44306SCVA51 GG032550XD YL8Z3A428AA
44305SCVA91 44306SCVA90 GG042550XD YL8Z3A428BA
44305STXA02 44306SCVA91 GG042560XG ZC32550XA
44305SZAA01 44306STXA02    
44306S2H951 44306SZAA01    
44306SZAA11 44306SZAA01RM    
44306SZAA12 66-4213    
66-4214      
for Europe Car
for VOLKSWAGEN for VOLKSWAGEN
4885712AD 7B0407271B 7E0407271G 7LA407272C
4885713AF 7B0407272 7E0407271P 7LA4 0571 2CX
4881214AE 7B0407272E 7LA407271E  
7B0407271A      
for America Car
for CHRYSLER for MERCURY
4593447AA 557180AD 4F1Z3B437AA GG322560X
4641855AA 52114390AB 5L8Z3A428DB GG362560XA
4641855AC 5273546AC 66-2249 YL8Z3A427CA
4641856AA 66-3108 9L8Z3A427C YL8Z3A427DA
4641856AC 66-3109 9L8Z3A427D YL8Z3A427EA
4882517 66-3130 GG062550XD YL8Z3A427FA
4882518 66-3131 GG062560XE YL8Z3A428CA
4882519 66-3234 GG312560X ZZDA2560X
4882520 66-3518 ZZDA2560XC ZZDA2560XA
557130AB 66-3520 for RAM
66-3552 66-3522 4885713AD 55719AB
66-3553 66-3551 4881214AD 66-3404
66-3554 66-3639 55719AA 66-3740
68193908AB 66-3641 68571398AA  
for FORD for DODGE
1F0571400 E6DZ3V428AARM 4593449AA 7B0407272A
1F0571410 E8DZ3V427AARM 4641855AE 7B0407272B
1F2Z3B436AA E8DZ3V428AARM 4641855EE 7B0407272C
2F1Z3A428CA E90Y3V427AARM 4641856AD R4881214AE
2M5Z3B437CA E90Y3V428AARM 4641856AF RL189279AA
4F1Z3B437BA F0DZ3V427AARM 4885710AC 557180AG
5M6Z3A428AA F0DZ3V428AARM 4885710AE 5170822AA
5S4Z3B437AA F21Z3B437A 4885710AF 52114390AA
66-2005 F21Z3B437B 4885710AG 5273546AD
66-2008 F2DZ3B436A 4885711AC 5273546AE
66-2571 F2DZ3B436B 4885711AD 5273546AF
66-2084 F2DZ3B437A 4885712AC 5273558AB
66-2086 F2DZ3B437B 4885712AE 5273558AD
66-2095 F4DZ3B437A 4885712AG 5273558AE
66-2101 F57Z3B436BA 4885712AH 5273558AF
66-2143 F57Z3B437BA 4885713AC 4881214AC
6S4Z3B437BA F5DZ3A427BA 4885713AG 4881214AF
8S4Z3B437A F5DZ3A428AS 4885713AI 4881214AG
9L8Z3A427A F5DZ3B426D 4885713AJ 557130AA
E6DZ3V427AARM F5DZ3B436D 5273558AG 557180AE
YF1Z3A428RS F5DZ3B437B 66-3382 557180AF
YL8Z3A428DA F5TZ3B436A 66-3511 66-3514
YS4Z3B437BB GG032560XG 66-3759 66-3564
YS4Z3B437CB GG362550X    
YF1Z3A427L      
for CHEVROLET for JEEP
257191 26062613 4578885AA 5215710AA
22791460 4578885AB 5215711AB
26011961 4578885AC 5215711AB
26571730 2657189 4720380 5273438AC
2657165 66-1401 4720381 5273438AD
26058932 66-1438 5012456AB 5273438AE
26065719 88982496 5012457AB 5273438AG
for HUMMER 5066571AA 66-3220
1571204 595716 557120AB 66-3221
15886012 66-1417 557120AC 66-3298
for CADILLAC 557120AD 66-3352
88957151 66-1416 557120AE 66-3417
66-1009 66-1430 5189278AA 66-3418
66-1415 88957150 5189279AA 66-3419

 

 

 

 

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Condition: New
Color: Black
Certification: ISO
Type: Drive Shaft
Application Brand: Ameican Car
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What Maintenance Practices Are Essential for Prolonging the Lifespan of Rear Drive Shafts?

Maintaining rear drive shafts is essential for ensuring their longevity and optimal performance. By following proper maintenance practices, you can prolong the lifespan of rear drive shafts and prevent premature failures. Here are the key maintenance practices that are essential for maximizing the lifespan of rear drive shafts:

1. Regular Inspection:

Performing regular inspections is crucial for identifying any early signs of wear, damage, or misalignment in the rear drive shaft. Inspect the drive shaft for any visible cracks, dents, or corrosion. Pay attention to the condition of the universal joints (u-joints) or constant velocity (CV) joints, as they are prone to wear. Look for excessive play or looseness in the joints, and check for leaks or torn boots that could allow dirt and moisture to enter. Regular inspections help catch potential issues before they escalate and cause significant damage to the drive shaft.

2. Lubrication:

Proper lubrication of the drive shaft’s u-joints or CV joints is critical for reducing friction, preventing wear, and maintaining smooth operation. Consult the manufacturer’s guidelines to determine the recommended lubricant and interval for greasing the joints. Use high-quality lubricants that are compatible with the specific joint type and follow the correct greasing procedure. Insufficient lubrication can lead to accelerated wear and premature failure of the drive shaft. Regularly inspect the joints’ condition during the greasing process to ensure they are adequately lubricated and in good working order.

3. Balancing and Alignment:

Keep the rear drive shaft properly balanced and aligned to prevent vibrations and excessive stress on the drivetrain components. If you notice vibrations, especially at higher speeds, have the drive shaft’s balance checked by a professional. Imbalances can occur due to the accumulation of dirt or debris, damaged balancing weights, or wear on the drive shaft. Similarly, if you experience driveline vibrations or notice uneven tire wear, it may indicate misalignment. Have the drive shaft alignment checked and adjusted as necessary. Proper balancing and alignment contribute to a smoother and more reliable operation, minimizing wear on the drive shaft.

4. Protection from Moisture and Contaminants:

Rear drive shafts are susceptible to moisture, dirt, and other contaminants that can lead to corrosion, accelerated wear, and joint failure. Avoid driving through deep water or muddy conditions that can submerge or coat the drive shaft with corrosive substances. If the drive shaft becomes wet or dirty, clean it promptly using a gentle stream of water and mild soap, and ensure it is thoroughly dried. Applying a protective coating or lubricant to exposed surfaces can help prevent corrosion. Additionally, inspect and replace damaged or torn joint boots to prevent dirt and moisture from entering and causing damage.

5. Proper Torque and Fastener Inspection:

Ensure that all fasteners, such as bolts and nuts, are tightened to the manufacturer’s specified torque values. Loose or improperly tightened fasteners can lead to vibrations, misalignment, and damage to the drive shaft. Regularly inspect the fasteners for any signs of loosening or damage and tighten them as necessary. During maintenance or repairs that involve removing the drive shaft, ensure that the fasteners are properly reinstalled and torqued to the recommended specifications. Following the correct torque values and fastener inspection practices helps maintain the integrity and safety of the rear drive shaft.

6. Professional Maintenance and Repairs:

While some maintenance tasks can be performed by vehicle owners, certain maintenance and repair procedures are best left to professionals with specialized knowledge and equipment. If you encounter significant issues, such as severe wear, damaged joints, or suspected balance or alignment problems, it is advisable to consult a qualified mechanic or drivetrain specialist. They can conduct thorough inspections, provide accurate diagnoses, and perform the necessary repairs or replacements to ensure the rear drive shaft’s longevity and proper functioning.

7. Follow Manufacturer Guidelines:

Always refer to the vehicle manufacturer’s guidelines and recommendations for maintenance practices specific to your vehicle’s rear drive shaft. Manufacturers provide valuable information regarding maintenance intervals, lubrication requirements, inspection procedures, and other important considerations. Adhering to these guidelines ensures that you follow the best practices and requirements specified for your particular drive shaft model, contributing to its prolonged lifespan.

In summary, regular inspection, proper lubrication, balancing and alignment, protection from moisture and contaminants, proper torque and fastener inspection, professional maintenance and repairs when necessary, and following manufacturer guidelines are essential maintenance practices for prolonging the lifespan of rear drive shafts. By implementing these practices, you can enhance the reliability, durability, and performanceof the rear drive shaft, ultimately extending its lifespan and reducing the risk of unexpected failures or costly repairs.

pto shaft

How Do Rear Drive Shafts Ensure Smooth Power Delivery and Minimize Vibration in Vehicles?

Rear drive shafts play a critical role in ensuring smooth power delivery and minimizing vibration in vehicles. They are designed to transmit torque from the transmission or transfer case to the rear differential or axle, allowing the wheels to propel the vehicle forward. Here’s a detailed explanation of how rear drive shafts achieve smooth power delivery and minimize vibration:

1. Balanced Design:

Rear drive shafts are carefully engineered to achieve a balanced design. This involves taking into consideration factors such as length, diameter, material properties, and weight distribution. By achieving balance, the drive shaft minimizes the occurrence of vibrations that can result from uneven weight distribution or misalignment. Balanced drive shafts reduce the chances of vibration-induced discomfort, noise, and potential damage to other drivetrain components.

2. Precision Manufacturing:

The manufacturing process of rear drive shafts involves precision techniques to ensure the highest level of accuracy and quality. Computer numerical control (CNC) machining and advanced welding methods are employed to create drive shafts with precise dimensions and alignment. This precision manufacturing helps to reduce any imperfections or inconsistencies that could contribute to vibration. By producing drive shafts with tight tolerances, manufacturers strive to achieve smooth power delivery and minimize vibration.

3. High-Quality Materials:

The choice of materials for rear drive shafts greatly influences their ability to ensure smooth power delivery and minimize vibration. Drive shafts are commonly made from materials such as steel, aluminum, or composite materials. These materials are selected for their strength, durability, and vibration-damping properties. High-quality materials with excellent torsional rigidity and appropriate damping characteristics help absorb and dissipate vibrations, resulting in smoother power delivery and a reduction in unwanted vibrations.

4. Dampening Techniques:

Vibration dampening techniques are employed in rear drive shafts to further minimize vibrations. These techniques include the use of rubber or polyurethane bushings and isolators at the connection points between the drive shaft and other components, such as the transmission, transfer case, and differential. These bushings act as vibration absorbers, reducing the transfer of vibrations from the drive shaft to the rest of the vehicle’s drivetrain. By effectively isolating vibrations, rear drive shafts contribute to a smoother power delivery and a more comfortable driving experience.

5. Drive Shaft Angles:

The angles at which the rear drive shaft operates can impact power delivery and vibration. Rear drive shafts are designed with proper operating angles to minimize vibration. These angles, known as the driveshaft angles or u-joint angles, are carefully calculated to ensure optimal alignment and reduce vibration-causing forces. Improperly aligned drive shaft angles can result in driveline vibrations, so proper alignment is crucial for smooth power delivery and minimal vibration.

6. Dynamic Balancing:

During the manufacturing process, rear drive shafts undergo dynamic balancing. Dynamic balancing involves spinning the drive shaft and adding small counterweights to eliminate any imbalances. This process ensures that the drive shaft is evenly weighted and free from vibration-causing irregularities. Dynamic balancing helps achieve smooth power delivery and minimizes vibration by eliminating the effects of imbalance that can arise from manufacturing tolerances or material variations.

7. Regular Maintenance:

Regular maintenance and inspection of rear drive shafts are essential to ensure their optimal performance and minimize vibration. This includes checking for signs of wear, damage, or misalignment. Proper lubrication of universal joints and ensuring the integrity of the drive shaft’s components are also important maintenance tasks. By keeping rear drive shafts in good condition, potential sources of vibration can be identified and addressed promptly, contributing to smooth power delivery and minimizing vibration.

In summary, rear drive shafts achieve smooth power delivery and minimize vibration through balanced design, precision manufacturing, high-quality materials, dampening techniques, proper drive shaft angles, dynamic balancing, and regular maintenance. These measures collectively contribute to a comfortable and efficient driving experience while reducing the risk of drivetrain-related vibration and potential damage to the vehicle.

pto shaft

How Do Rear Drive Shafts Handle Variations in Torque, Speed, and Alignment?

Rear drive shafts are designed to handle variations in torque, speed, and alignment within a vehicle’s drivetrain. They play a crucial role in transmitting power from the engine or transmission to the rear wheels while accommodating the dynamic forces and movements encountered during operation. Here’s a detailed explanation of how rear drive shafts handle variations in torque, speed, and alignment:

Variations in Torque:

Rear drive shafts are engineered to withstand and transmit varying levels of torque generated by the engine. Torque variations occur during acceleration, deceleration, and changes in load. To handle these variations, rear drive shafts are typically constructed with high-strength materials such as steel or aluminum to provide the necessary strength and rigidity. The diameter, wall thickness, and design of the drive shaft are carefully calculated to ensure torque capacity and reliability. Additionally, universal joints (u-joints) or constant velocity (CV) joints are incorporated into the drive shaft assembly to allow for rotational movement and accommodate changes in angles and torque loads.

Variations in Speed:

Rear drive shafts are designed to adapt to variations in rotational speed between the engine or transmission and the rear wheels. As the vehicle accelerates or decelerates, the rotational speed of the drive shaft changes. To handle these variations, the length and design of the rear drive shaft are carefully calculated to minimize vibrations and maintain smooth power delivery. The drive shaft may incorporate features such as balancing weights or dampers to reduce or eliminate vibrations caused by speed fluctuations. Additionally, the use of u-joints or CV joints allows for angular movement and accommodates speed differentials between the two ends of the drive shaft.

Variations in Alignment:

Rear drive shafts must also accommodate variations in alignment caused by suspension movement, chassis flex, and drivetrain articulation. As the suspension compresses or extends, the drivetrain components can shift in relation to each other, causing changes in the alignment of the rear drive shaft. To handle these variations, rear drive shafts incorporate flexible components such as u-joints or CV joints. These joints allow for angular movement and articulation, accommodating changes in the relative positions of the transmission, differential, and rear wheels. The use of flexible couplings or slip yokes at each end of the drive shaft also helps to compensate for alignment changes and prevent binding or excessive stress on the drive shaft components.

Vibration and Harmonic Damping:

Vibrations and harmonic forces can be generated within the drivetrain, especially at higher speeds. Rear drive shafts are designed to mitigate these vibrations and dampen harmonic forces to ensure a smooth and balanced ride. Various techniques are employed to achieve this, including the use of properly balanced drive shafts, vibration-absorbing materials, and damping devices such as rubber or elastomer dampers. These measures help reduce the transmission of vibrations and harmonics throughout the drivetrain, enhancing the overall comfort, stability, and longevity of the rear drive shaft.

In summary, rear drive shafts are engineered to handle variations in torque, speed, and alignment within a vehicle’s drivetrain. They are constructed with high-strength materials, incorporate flexible joints, and employ techniques to dampen vibrations and harmonics. By accommodating these variations, rear drive shafts ensure efficient power transmission, smooth operation, and reliable performance in various driving conditions.

China supplier Auto Part Axle Shaft Rear Front CV Axle Shaft Drive Shafts for Jeep CZPT Dodge Chevrolet American Car  China supplier Auto Part Axle Shaft Rear Front CV Axle Shaft Drive Shafts for Jeep CZPT Dodge Chevrolet American Car
editor by CX 2024-05-07

China OEM for CZPT CZPT Honda CZPT Mazda CZPT CZPT CZPT Jeep Auto Spare Parts Front and Rear CV Shaft Drive Shaft

Product Description

 Material:

Stainless steelSS201,SS303,SS304,SS316,SS416,SS420,17-4PH,SUS440C 

AluminumAL2571,AL5754(Almg3),AL5083,AL6061,AL6063,AL5052,AL7075

Carbon steelQ235,S235JR,1571, 1015, 1571, 1571, 1030, 1035, 1040, 1045

Alloy steel40Cr,15CrMo,4140,4340,35CrMo,16MnCr5

Brass/Copper/BronzeC11000, C15710, C12000, C26000, C36000, etc.etc…

Stainless Steel (201, 302, 303, 304, 316, 420, 430) etc…

Steel (mild steel, Q235, 20#, 45#) etc…

Process:

CNC Machining, turning,milling, lathe machining, boring, grinding, drilling,broaching, stamping,etc…

Surface treatment:

Clear/color anodized; Hard anodized; Powder-coating;Sand-blasting; Painting;    

Nickel plating; Chrome plating; Zinc plating; Silver/gold plating; 

Black oxide coating, Polishing etc…

Gerenal Tolerance:(+/-mm)

Gear grade :7Gread (ISO)

Run Out:0.005mm

Roundness:0.001mm

ID/OD Grinding: 0.002

Roughness : Ra 0.05 Rz 0.2

Certification:

IATF 16949, ISO140001

Experience:

16 years of  machining products

Packaging :

Standard: carton with plastic bag protecting

For large quantity: pallet or wooden box as required

Lead time :

In general:30-60days

Term of Payment:

T/T,  L/C, etc

Minimum Order:

Comply with customer’s demand

Delivery way:

Express(DHL,Fedex, UPS,TNT,EMS), By Sea, By air, or as required

ZheZheJiang nlead Precision Co., Ltd. which focuses on CNC machining, including milling, turning, auto-lathe turning,holing,grinding, heat treatment from raw materials of bars, tube, extruded profiles, blanks of cold forging & hot forging, aluminum die casting.
We provide one-stop service, from professional design analysis, to free quote, fast prototype, IATF16949 & ISO14001 standard manufacturing, to safe shipping and great after-sales services.During 16 years, we have win lots of trust in the global market, most of them come from North America and Europe.
Now you may have steady customers, and hope you can keep us in  the archives to get more market news.
Sunlead produce all kinds of machining parts according to customer’s drawing, we can produces stainless steel Turned parts,carbon steel Turned parts, aluminum turned parts,brass & copper turned parts.
Please feel free to send inquiry to us, and our professional sales manager will get back to you ASAP!

FAQ:
Q1: How can I get the samples?
A: If you need some samples to test, you should pay for the transportation freight of samples and our samples cost.
Q2: Can we have our marking,Logo or company name to be printed on your products or package?
A: Sure. Your marking,logo,or company name can be put on your products by Laser machine
Q3: How to order?
A: Please send us your purchase order by Email, or you can ask us to send you a Performa invoice for your order. We need to know the following information for your order.
1) Product information-Quantity, Specification ( Size, Material, Technological and Packing requirements etc.)
2) Delivery time required
3) Shipping information-Company name, Street address, Phone&Fax number, Destination sea port.
4) Forwarder’s contact details if there’s any in China.
Q4: When can you get the price?
We usually quote within 48 hours after we get your inquiry. If you are very urgent to get the price, please call us or tell us in your email so that we will regard your inquiry priority. Kindly note that if your inquiry is with more details then the price we quote will be more accurate
.Q5: How can you get a sample to check our quality?
After price confirmation, you can require for samples to check our quality
.Q6: What kind of files do we accept for drawing?
A: PDF, CAD,STP,STEP
Q7: What about the lead time for mass production?
Honestly, it depends on the order quantity and the season you place the order. Generally speaking,it would need about 30-60days to finish the sample.
Q8: What is our terms of delivery?
We accept EXW, FOB, CFR, CIF, DDU, DDP, etc. You can choose the 1 which is the most convenient or cost effective for you.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: Yes
Type: Shaft
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

What Factors Should Be Considered When Selecting the Right Rear Drive Shaft for a Vehicle?

When selecting the right rear drive shaft for a vehicle, several factors need to be considered to ensure optimal performance, durability, and safety. Here’s a detailed explanation of the key factors that should be taken into account:

1. Vehicle Specifications:

The specific characteristics of the vehicle play a significant role in determining the appropriate rear drive shaft. Factors such as the vehicle’s weight, horsepower, torque output, wheelbase, suspension design, and intended use (e.g., off-roading, towing, performance driving) need to be considered. These specifications help determine the required torque capacity, length, diameter, and material strength of the drive shaft to handle the vehicle’s demands effectively.

2. Drivetrain Configuration:

The drivetrain configuration of the vehicle influences the selection of the rear drive shaft. Vehicles with rear-wheel drive (RWD), four-wheel drive (4WD), or all-wheel drive (AWD) systems have different drivetrain layouts and torque distribution requirements. The drive shaft must be compatible with the vehicle’s drivetrain configuration, including the type of differential, transfer case, and front-wheel drive components, if applicable.

3. Torque and Power Requirements:

The torque and power output of the vehicle’s engine or transmission impact the selection of the rear drive shaft. Higher torque and power levels necessitate a stronger and more robust drive shaft to handle the increased load. It is important to consider the maximum torque and power values of the vehicle and select a drive shaft that can safely and reliably transmit the power without exceeding its rated capacity.

4. Material Selection:

The choice of materials for the rear drive shaft is crucial in ensuring its strength, durability, and weight. Common materials used for drive shafts include steel and aluminum. Steel drive shafts offer high strength and are typically used in heavy-duty applications, while aluminum drive shafts are lighter and can provide weight savings, making them suitable for performance-oriented vehicles. The material selection should also consider factors such as corrosion resistance, cost, and manufacturing feasibility.

5. Length and Diameter:

The length and diameter of the rear drive shaft are critical considerations to prevent issues such as vibration, bending, or excessive deflection. The length of the drive shaft depends on the vehicle’s wheelbase and the distance between the transmission or transfer case and the rear differential. The diameter of the drive shaft is determined by the torque and power requirements, as well as the material properties. Proper sizing ensures the drive shaft can handle the forces and maintain optimal power transmission without compromising safety or performance.

6. Suspension and Drivetrain Movements:

The suspension system and drivetrain movements of the vehicle need to be taken into account when selecting a rear drive shaft. The drive shaft must accommodate the range of motion and articulation of the suspension, as well as the angular movements and changes in alignment between the transmission, differential, and rear wheels. Flexible joints such as universal joints (u-joints) or constant velocity (CV) joints are typically used to allow for these movements while maintaining torque transmission.

7. Environmental Factors:

The environmental conditions in which the vehicle will operate should be considered when selecting a rear drive shaft. Factors such as temperature extremes, exposure to moisture, off-road terrain, and corrosive substances can impact the choice of materials, protective coatings, and maintenance requirements of the drive shaft. It is essential to select a drive shaft that can withstand the environmental conditions and maintain its performance and longevity.

8. Manufacturer Quality and Compatibility:

When choosing a rear drive shaft, it is important to consider the reputation and quality of the manufacturer. Selecting a drive shaft from a reputable and experienced manufacturer ensures that the product meets industry standards, undergoes thorough quality control, and is compatible with the vehicle’s specifications and requirements. It is advisable to consult with automotive professionals or refer to manufacturer guidelines to ensure proper selection and compatibility.

In summary, selecting the right rear drive shaft for a vehicle involves considering factors such as vehicle specifications, drivetrain configuration, torque and power requirements, material selection, length and diameter, suspension and drivetrain movements, environmental factors, and manufacturer quality. Taking these factors into account helps ensure that the chosen rear drive shaft is suitable for the vehicle’s needs and provides reliable and efficient power transmission.

pto shaft

How Do Rear Drive Shafts Contribute to the Overall Performance of Rear-Wheel-Drive Vehicles?

Rear drive shafts play a crucial role in the overall performance of rear-wheel-drive (RWD) vehicles. They are responsible for transferring torque from the transmission or transfer case to the rear differential, which then distributes power to the rear wheels. Here’s a detailed explanation of how rear drive shafts contribute to the overall performance of RWD vehicles:

1. Power Transmission:

Rear drive shafts transmit power from the engine to the rear wheels, allowing for propulsion and forward motion. As the engine generates torque, it is transferred through the transmission or transfer case to the rear drive shaft. The drive shaft then transmits this torque to the rear differential, which further distributes the power to the rear wheels. The efficiency and effectiveness of this power transmission process directly impact the acceleration, speed, and overall performance of the vehicle.

2. Torque Delivery:

Rear drive shafts ensure efficient torque delivery to the rear wheels, enabling traction and propulsion. By connecting the transmission or transfer case to the rear differential, the drive shaft transfers torque generated by the engine to the wheels. The rear wheels receive this torque, allowing them to grip the road surface and propel the vehicle forward. The ability of the rear drive shaft to effectively deliver torque contributes to improved acceleration, responsiveness, and overall performance of RWD vehicles.

3. Weight Distribution:

Rear drive shafts contribute to the proper weight distribution in RWD vehicles. Since the engine is typically positioned at the front of the vehicle, the rear drive shaft helps balance the weight distribution by transferring power to the rear wheels. This balanced weight distribution enhances overall stability, handling, and cornering capabilities. It allows for better control of the vehicle and helps optimize the performance during various driving conditions.

4. Handling and Stability:

Rear drive shafts significantly influence the handling and stability of RWD vehicles. By delivering torque to the rear wheels, the drive shaft contributes to the vehicle’s rear-wheel traction. This configuration provides better weight transfer during acceleration, which improves traction and reduces the chances of wheel spin. The rear drive shaft also aids in maintaining stability during cornering by helping to distribute the vehicle’s weight more evenly. RWD vehicles are known for their balanced and predictable handling characteristics, and the rear drive shaft plays a vital role in achieving these attributes.

5. Performance in Various Conditions:

Rear drive shafts impact the performance of RWD vehicles in different driving conditions. In dry or high-grip situations, the rear-wheel traction provided by the drive shaft enables quick acceleration and efficient power delivery. RWD vehicles often exhibit superior handling characteristics in these conditions due to the balanced weight distribution and the rear drive shaft’s ability to transfer torque effectively. However, in low-traction conditions such as rain, snow, or off-road situations, RWD vehicles may require additional driver skill and careful throttle control to maintain traction and stability.

6. Customization and Performance Upgrades:

Rear drive shafts can be customized or upgraded to enhance the performance of RWD vehicles. For example, performance-oriented drive shafts made from lighter materials like aluminum or carbon fiber can reduce rotational mass, improving overall vehicle agility and responsiveness. Upgraded drive shafts with strengthened components can handle increased torque and power outputs in high-performance applications. Customization and upgrades to the rear drive shaft allow vehicle owners to tailor the performance characteristics to their specific needs and preferences.

7. Maintenance and Service:

Regular maintenance and service of rear drive shafts are essential for maintaining optimal performance. Periodic inspections, lubrication, and addressing any issues such as worn U-joints or CV joints can prevent driveline vibrations, reduce power losses, and ensure smooth torque transmission. Proper maintenance contributes to the longevity and reliability of the rear drive shaft, allowing it to continue supporting the overall performance of the RWD vehicle.

In summary, rear drive shafts are integral to the overall performance of RWD vehicles. They facilitate power transmission, torque delivery, and weight distribution, contributing to acceleration, traction, handling, and stability. The rear drive shaft’s ability to efficiently transfer torque to the rear wheels is key to the performance characteristics of RWD vehicles. Through customization, upgrades, and regular maintenance, rear drive shafts can be optimized to further enhance the performance of RWD vehicles in various driving conditions and applications.

pto shaft

How Do Rear Drive Shafts Handle Variations in Torque, Speed, and Alignment?

Rear drive shafts are designed to handle variations in torque, speed, and alignment within a vehicle’s drivetrain. They play a crucial role in transmitting power from the engine or transmission to the rear wheels while accommodating the dynamic forces and movements encountered during operation. Here’s a detailed explanation of how rear drive shafts handle variations in torque, speed, and alignment:

Variations in Torque:

Rear drive shafts are engineered to withstand and transmit varying levels of torque generated by the engine. Torque variations occur during acceleration, deceleration, and changes in load. To handle these variations, rear drive shafts are typically constructed with high-strength materials such as steel or aluminum to provide the necessary strength and rigidity. The diameter, wall thickness, and design of the drive shaft are carefully calculated to ensure torque capacity and reliability. Additionally, universal joints (u-joints) or constant velocity (CV) joints are incorporated into the drive shaft assembly to allow for rotational movement and accommodate changes in angles and torque loads.

Variations in Speed:

Rear drive shafts are designed to adapt to variations in rotational speed between the engine or transmission and the rear wheels. As the vehicle accelerates or decelerates, the rotational speed of the drive shaft changes. To handle these variations, the length and design of the rear drive shaft are carefully calculated to minimize vibrations and maintain smooth power delivery. The drive shaft may incorporate features such as balancing weights or dampers to reduce or eliminate vibrations caused by speed fluctuations. Additionally, the use of u-joints or CV joints allows for angular movement and accommodates speed differentials between the two ends of the drive shaft.

Variations in Alignment:

Rear drive shafts must also accommodate variations in alignment caused by suspension movement, chassis flex, and drivetrain articulation. As the suspension compresses or extends, the drivetrain components can shift in relation to each other, causing changes in the alignment of the rear drive shaft. To handle these variations, rear drive shafts incorporate flexible components such as u-joints or CV joints. These joints allow for angular movement and articulation, accommodating changes in the relative positions of the transmission, differential, and rear wheels. The use of flexible couplings or slip yokes at each end of the drive shaft also helps to compensate for alignment changes and prevent binding or excessive stress on the drive shaft components.

Vibration and Harmonic Damping:

Vibrations and harmonic forces can be generated within the drivetrain, especially at higher speeds. Rear drive shafts are designed to mitigate these vibrations and dampen harmonic forces to ensure a smooth and balanced ride. Various techniques are employed to achieve this, including the use of properly balanced drive shafts, vibration-absorbing materials, and damping devices such as rubber or elastomer dampers. These measures help reduce the transmission of vibrations and harmonics throughout the drivetrain, enhancing the overall comfort, stability, and longevity of the rear drive shaft.

In summary, rear drive shafts are engineered to handle variations in torque, speed, and alignment within a vehicle’s drivetrain. They are constructed with high-strength materials, incorporate flexible joints, and employ techniques to dampen vibrations and harmonics. By accommodating these variations, rear drive shafts ensure efficient power transmission, smooth operation, and reliable performance in various driving conditions.

China OEM for CZPT CZPT Honda CZPT Mazda CZPT CZPT CZPT Jeep Auto Spare Parts Front and Rear CV Shaft Drive Shaft  China OEM for CZPT CZPT Honda CZPT Mazda CZPT CZPT CZPT Jeep Auto Spare Parts Front and Rear CV Shaft Drive Shaft
editor by CX 2024-04-30

China wholesaler 938-269 52111596AA; High-Quality Drive Shaft for Jeep Liberty 2005-2007

Product Description

As a professional manufacturer for propeller shaft, we have +1000 items for all kinds of car. At present, our products are mainly sold in North America, Europe, Australia, South Korea, the Middle East and Southeast Asia and other regions, applicable models are European cars, American cars, Japanese and Korean cars, etc.

 

Our advantage:

 

1. Full range of products

2. MOQ qty: 1pcs/items

3. Delivery on time

4: Warranty: 1 YEAR
 

OE NUMBER 52111594AA;52111596AA;52111596AB
TYPE JEEP LIBERTY 2005-2007
MATERIAL STEEL
BALANCE STHangZhouRD G16  3200RPM
   

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1years
Condition: New
Color: Black
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

Are there any limitations or disadvantages associated with drive shafts?

While drive shafts are widely used and offer several advantages, they also have certain limitations and disadvantages that should be considered. Here’s a detailed explanation of the limitations and disadvantages associated with drive shafts:

1. Length and Misalignment Constraints:

Drive shafts have a maximum practical length due to factors such as material strength, weight considerations, and the need to maintain rigidity and minimize vibrations. Longer drive shafts can be prone to increased bending and torsional deflection, leading to reduced efficiency and potential driveline vibrations. Additionally, drive shafts require proper alignment between the driving and driven components. Misalignment can cause increased wear, vibrations, and premature failure of the drive shaft or its associated components.

2. Limited Operating Angles:

Drive shafts, especially those using U-joints, have limitations on operating angles. U-joints are typically designed to operate within specific angular ranges, and operating beyond these limits can result in reduced efficiency, increased vibrations, and accelerated wear. In applications requiring large operating angles, constant velocity (CV) joints are often used to maintain a constant speed and accommodate greater angles. However, CV joints may introduce higher complexity and cost compared to U-joints.

3. Maintenance Requirements:

Drive shafts require regular maintenance to ensure optimal performance and reliability. This includes periodic inspection, lubrication of joints, and balancing if necessary. Failure to perform routine maintenance can lead to increased wear, vibrations, and potential driveline issues. Maintenance requirements should be considered in terms of time and resources when using drive shafts in various applications.

4. Noise and Vibration:

Drive shafts can generate noise and vibrations, especially at high speeds or when operating at certain resonant frequencies. Imbalances, misalignment, worn joints, or other factors can contribute to increased noise and vibrations. These vibrations may affect the comfort of vehicle occupants, contribute to component fatigue, and require additional measures such as dampers or vibration isolation systems to mitigate their effects.

5. Weight and Space Constraints:

Drive shafts add weight to the overall system, which can be a consideration in weight-sensitive applications, such as automotive or aerospace industries. Additionally, drive shafts require physical space for installation. In compact or tightly packaged equipment or vehicles, accommodating the necessary drive shaft length and clearances can be challenging, requiring careful design and integration considerations.

6. Cost Considerations:

Drive shafts, depending on their design, materials, and manufacturing processes, can involve significant costs. Customized or specialized drive shafts tailored to specific equipment requirements may incur higher expenses. Additionally, incorporating advanced joint configurations, such as CV joints, can add complexity and cost to the drive shaft system.

7. Inherent Power Loss:

Drive shafts transmit power from the driving source to the driven components, but they also introduce some inherent power loss due to friction, bending, and other factors. This power loss can reduce overall system efficiency, particularly in long drive shafts or applications with high torque requirements. It is important to consider power loss when determining the appropriate drive shaft design and specifications.

8. Limited Torque Capacity:

While drive shafts can handle a wide range of torque loads, there are limits to their torque capacity. Exceeding the maximum torque capacity of a drive shaft can lead to premature failure, resulting in downtime and potential damage to other driveline components. It is crucial to select a drive shaft with sufficient torque capacity for the intended application.

Despite these limitations and disadvantages, drive shafts remain a widely used and effective means of power transmission in various industries. Manufacturers continuously work to address these limitations through advancements in materials, design techniques, joint configurations, and balancing processes. By carefully considering the specific application requirements and potential drawbacks, engineers and designers can mitigate the limitations and maximize the benefits of drive shafts in their respective systems.

pto shaft

Can drive shafts be customized for specific vehicle or equipment requirements?

Yes, drive shafts can be customized to meet specific vehicle or equipment requirements. Customization allows manufacturers to tailor the design, dimensions, materials, and other parameters of the drive shaft to ensure compatibility and optimal performance within a particular vehicle or equipment. Here’s a detailed explanation of how drive shafts can be customized:

1. Dimensional Customization:

Drive shafts can be customized to match the dimensional requirements of the vehicle or equipment. This includes adjusting the overall length, diameter, and spline configuration to ensure proper fitment and clearances within the specific application. By customizing the dimensions, the drive shaft can be seamlessly integrated into the driveline system without any interference or limitations.

2. Material Selection:

The choice of materials for drive shafts can be customized based on the specific requirements of the vehicle or equipment. Different materials, such as steel alloys, aluminum alloys, or specialized composites, can be selected to optimize strength, weight, and durability. The material selection can be tailored to meet the torque, speed, and operating conditions of the application, ensuring the drive shaft’s reliability and longevity.

3. Joint Configuration:

Drive shafts can be customized with different joint configurations to accommodate specific vehicle or equipment requirements. For example, universal joints (U-joints) may be suitable for applications with lower operating angles and moderate torque demands, while constant velocity (CV) joints are often used in applications requiring higher operating angles and smoother power transmission. The choice of joint configuration depends on factors such as operating angle, torque capacity, and desired performance characteristics.

4. Torque and Power Capacity:

Customization allows drive shafts to be designed with the appropriate torque and power capacity for the specific vehicle or equipment. Manufacturers can analyze the torque requirements, operating conditions, and safety margins of the application to determine the optimal torque rating and power capacity of the drive shaft. This ensures that the drive shaft can handle the required loads without experiencing premature failure or performance issues.

5. Balancing and Vibration Control:

Drive shafts can be customized with precision balancing and vibration control measures. Imbalances in the drive shaft can lead to vibrations, increased wear, and potential driveline issues. By employing dynamic balancing techniques during the manufacturing process, manufacturers can minimize vibrations and ensure smooth operation. Additionally, vibration dampers or isolation systems can be integrated into the drive shaft design to further mitigate vibrations and enhance overall system performance.

6. Integration and Mounting Considerations:

Customization of drive shafts takes into account the integration and mounting requirements of the specific vehicle or equipment. Manufacturers work closely with the vehicle or equipment designers to ensure that the drive shaft fits seamlessly into the driveline system. This includes adapting the mounting points, interfaces, and clearances to ensure proper alignment and installation of the drive shaft within the vehicle or equipment.

7. Collaboration and Feedback:

Manufacturers often collaborate with vehicle manufacturers, OEMs (Original Equipment Manufacturers), or end-users to gather feedback and incorporate their specific requirements into the drive shaft customization process. By actively seeking input and feedback, manufacturers can address specific needs, optimize performance, and ensure compatibility with the vehicle or equipment. This collaborative approach enhances the customization process and results in drive shafts that meet the exact requirements of the application.

8. Compliance with Standards:

Customized drive shafts can be designed to comply with relevant industry standards and regulations. Compliance with standards, such as ISO (International Organization for Standardization) or specific industry standards, ensures that the customized drive shafts meet quality, safety, and performance requirements. Adhering to these standards provides assurance that the drive shafts are compatible and can be seamlessly integrated into the specific vehicle or equipment.

In summary, drive shafts can be customized to meet specific vehicle or equipment requirements through dimensional customization, material selection, joint configuration, torque and power capacity optimization, balancing and vibration control, integration and mounting considerations, collaboration with stakeholders, and compliance with industry standards. Customization allows drive shafts to be precisely tailored to the needs of the application, ensuring compatibility, reliability, and optimal performance.

pto shaft

What benefits do drive shafts offer for different types of vehicles and equipment?

Drive shafts offer several benefits for different types of vehicles and equipment. They play a crucial role in power transmission and contribute to the overall performance, efficiency, and functionality of various systems. Here’s a detailed explanation of the benefits that drive shafts provide:

1. Efficient Power Transmission:

Drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. By connecting the engine or motor to the driven system, drive shafts efficiently transfer rotational power, allowing vehicles and equipment to perform their intended functions. This efficient power transmission ensures that the power generated by the engine is effectively utilized, optimizing the overall performance and productivity of the system.

2. Versatility:

Drive shafts offer versatility in their applications. They are used in various types of vehicles, including cars, trucks, motorcycles, and off-road vehicles. Additionally, drive shafts are employed in a wide range of equipment and machinery, such as agricultural machinery, construction equipment, industrial machinery, and marine vessels. The ability to adapt to different types of vehicles and equipment makes drive shafts a versatile component for power transmission.

3. Torque Handling:

Drive shafts are designed to handle high levels of torque. Torque is the rotational force generated by the engine or power source. Drive shafts are engineered to efficiently transmit this torque without excessive twisting or bending. By effectively handling torque, drive shafts ensure that the power generated by the engine is reliably transferred to the wheels or driven components, enabling vehicles and equipment to overcome resistance, such as heavy loads or challenging terrains.

4. Flexibility and Compensation:

Drive shafts provide flexibility and compensation for angular movement and misalignment. In vehicles, drive shafts accommodate the movement of the suspension system, allowing the wheels to move up and down independently. This flexibility ensures a constant power transfer even when the vehicle encounters uneven terrain. Similarly, in machinery, drive shafts compensate for misalignment between the engine or motor and the driven components, ensuring smooth power transmission and preventing excessive stress on the drivetrain.

5. Weight Reduction:

Drive shafts contribute to weight reduction in vehicles and equipment. Compared to other forms of power transmission, such as belt drives or chain drives, drive shafts are typically lighter in weight. This reduction in weight helps improve fuel efficiency in vehicles and reduces the overall weight of equipment, leading to enhanced maneuverability and increased payload capacity. Additionally, lighter drive shafts contribute to a better power-to-weight ratio, resulting in improved performance and acceleration.

6. Durability and Longevity:

Drive shafts are designed to be durable and long-lasting. They are constructed using materials such as steel or aluminum, which offer high strength and resistance to wear and fatigue. Drive shafts undergo rigorous testing and quality control measures to ensure their reliability and longevity. Proper maintenance, including lubrication and regular inspections, further enhances their durability. The robust construction and long lifespan of drive shafts contribute to the overall reliability and cost-effectiveness of vehicles and equipment.

7. Safety:

Drive shafts incorporate safety features to protect operators and bystanders. In vehicles, drive shafts are often enclosed within a protective tube or housing, preventing contact with moving parts and reducing the risk of injury in the event of a failure. Similarly, in machinery, safety shields or guards are commonly installed around exposed drive shafts to minimize the potential hazards associated with rotating components. These safety measures ensure the well-being of individuals operating or working in proximity to vehicles and equipment.

In summary, drive shafts offer several benefits for different types of vehicles and equipment. They enable efficient power transmission, provide versatility in various applications, handle torque effectively, offer flexibility and compensation, contribute to weight reduction, ensure durability and longevity, and incorporate safety features. By providing these advantages, drive shafts enhance the performance, efficiency, reliability, and safety of vehicles and equipment across a wide range of industries.

China wholesaler 938-269 52111596AA; High-Quality Drive Shaft for Jeep Liberty 2005-2007  China wholesaler 938-269 52111596AA; High-Quality Drive Shaft for Jeep Liberty 2005-2007
editor by CX 2024-04-17

China Good quality 5273310ab Rear Drive Cardan Shaft Driveshaft for Jeep Patriot / Compass for Dodge Caliber 2011 2008-2016 Propshaft

Product Description

 

PROPELLER SHAFT manufacturer & supplier – CHINAMFG is your best choice

 

Product Name

For Jeep Compass Patriot 2AA, 5273310AB, 946-309

Vehicle Fitment

For Jeep Compass 2AD

for JEEP Cherokee

5257186AB

for JEEP Grand Cherokee

52123612AC

for JEEP Cherokee

5257186AC

for JEEP Grand Cherokee

52123612AA

for JEEP Cherokee

5215713AA

for JEEP Grand Cherokee

52123612AB

for JEEP Cherokee

6806AA

for JEEP Commander

52853646AE

for JEEP Grand Cherokee

52853AD

for JEEP Grand Cherokee

52853AC

for JEEP Grand Cherokee

52853AC

for JEEP Grand Cherokee

52853AA

for JEEP Grand Cherokee

5215716AC

for JEEP Commander

52123627A

for JEEP Grand Cherokee

5215716AD

for JEEP Commander

52853432AA

for JEEP Grand Cherokee

5215716AF

for JEEP Commander

52111597AA

for JEEP Liberty

5215716AE

for JEEP Commander

52853119AA

for JEEP Liberty

52853433AA

for JEEP Commander

52853119AB

for JEEP Liberty

52853433AB

for JEEP Commander

52853119AC

for JEEP Liberty

5273310AA

for JEEP Compass

52853436AC

for JEEP Liberty

5273310AB

for JEEP Compass

52853436AB

for JEEP Liberty

5215718AE

for JEEP Grand Cherokee

530571

for JEEP CHINAMFG

5215718AC

for JEEP Grand Cherokee

52098220

for JEEP CHINAMFG

5215718AD

for JEEP Grand Cherokee

52123551AA

for JEEP CHINAMFG

52123514AD

for JEEP Grand Cherokee

52123551AC

for JEEP CHINAMFG

52123514AA

for JEEP Grand Cherokee

52123551AB

for JEEP CHINAMFG

52123514AB

for JEEP Grand Cherokee

52123555AA

for JEEP CHINAMFG

52123514AC

for JEEP Grand Cherokee

 

 

DORMAN NO.

938-096

938-124

938-178

936-084

938-158

938-171

938-267

938-073

938-102

946-386

976-971

938-100

938-129

936-105

976-982

938-126

936-071

936-106

938-128

938-136

936-076

938-103

936-077

938-139

938-137

938-131

938-123

938-141

938-138

936-085

936-089

938-143

938-142

936-086

936-111

938-079

946-309

936-087

 

 

 

If you need more information about JEEP Propeller Shaft, please message or email to us ASAP.

 

—-  OUR ADVANTAGE —-
 +700 models for AMERICA & EUROPE marketMOQ: 3PCS / for 1 item, MIN order amount: USD5000
Quality assurance: One Year WarrantyStable delivery time: 45 days
Free Sample DevelopedApply O/A 30-90 days for regular customer

 

Becides JEEP Propeller Shaft,we have Over 700 items applicable for following vehicles:

 

 

 

 

 

 

 

 

—-   F A Q   —-
Q1:  If we don’t find what we need on your website, what should we do?
You can send us the OE number or of the product you need, we will check if we have them.
We also develop new models according to customer’s need;
you can contact us for more detail.
Q2:  Can I get a price discount if I order large quantities? Yes, it depends on your purchasing quantity, more quantity more discount.
Q3:  What about the delivery time? If we have stock, we can send you the goods within 3 working days,
if we don’t have stock, generally it needs 10 to 40 days.

Q4:  What’s our MOQ? Sample order for quality testing 1 piece , normal order 50 pieces for 1 order with mixed models .
Q5:  What’s your payment terms and condition ? We can accept T/T , LC, Trade Assurance, Western Union, Paypal, Moneygram ect.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Condition: New
Color: Black
Certification: ISO, Ts16949
Type: Drive Shaft
Application Brand: Jeep
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What Maintenance Practices Are Essential for Prolonging the Lifespan of Rear Drive Shafts?

Maintaining rear drive shafts is essential for ensuring their longevity and optimal performance. By following proper maintenance practices, you can prolong the lifespan of rear drive shafts and prevent premature failures. Here are the key maintenance practices that are essential for maximizing the lifespan of rear drive shafts:

1. Regular Inspection:

Performing regular inspections is crucial for identifying any early signs of wear, damage, or misalignment in the rear drive shaft. Inspect the drive shaft for any visible cracks, dents, or corrosion. Pay attention to the condition of the universal joints (u-joints) or constant velocity (CV) joints, as they are prone to wear. Look for excessive play or looseness in the joints, and check for leaks or torn boots that could allow dirt and moisture to enter. Regular inspections help catch potential issues before they escalate and cause significant damage to the drive shaft.

2. Lubrication:

Proper lubrication of the drive shaft’s u-joints or CV joints is critical for reducing friction, preventing wear, and maintaining smooth operation. Consult the manufacturer’s guidelines to determine the recommended lubricant and interval for greasing the joints. Use high-quality lubricants that are compatible with the specific joint type and follow the correct greasing procedure. Insufficient lubrication can lead to accelerated wear and premature failure of the drive shaft. Regularly inspect the joints’ condition during the greasing process to ensure they are adequately lubricated and in good working order.

3. Balancing and Alignment:

Keep the rear drive shaft properly balanced and aligned to prevent vibrations and excessive stress on the drivetrain components. If you notice vibrations, especially at higher speeds, have the drive shaft’s balance checked by a professional. Imbalances can occur due to the accumulation of dirt or debris, damaged balancing weights, or wear on the drive shaft. Similarly, if you experience driveline vibrations or notice uneven tire wear, it may indicate misalignment. Have the drive shaft alignment checked and adjusted as necessary. Proper balancing and alignment contribute to a smoother and more reliable operation, minimizing wear on the drive shaft.

4. Protection from Moisture and Contaminants:

Rear drive shafts are susceptible to moisture, dirt, and other contaminants that can lead to corrosion, accelerated wear, and joint failure. Avoid driving through deep water or muddy conditions that can submerge or coat the drive shaft with corrosive substances. If the drive shaft becomes wet or dirty, clean it promptly using a gentle stream of water and mild soap, and ensure it is thoroughly dried. Applying a protective coating or lubricant to exposed surfaces can help prevent corrosion. Additionally, inspect and replace damaged or torn joint boots to prevent dirt and moisture from entering and causing damage.

5. Proper Torque and Fastener Inspection:

Ensure that all fasteners, such as bolts and nuts, are tightened to the manufacturer’s specified torque values. Loose or improperly tightened fasteners can lead to vibrations, misalignment, and damage to the drive shaft. Regularly inspect the fasteners for any signs of loosening or damage and tighten them as necessary. During maintenance or repairs that involve removing the drive shaft, ensure that the fasteners are properly reinstalled and torqued to the recommended specifications. Following the correct torque values and fastener inspection practices helps maintain the integrity and safety of the rear drive shaft.

6. Professional Maintenance and Repairs:

While some maintenance tasks can be performed by vehicle owners, certain maintenance and repair procedures are best left to professionals with specialized knowledge and equipment. If you encounter significant issues, such as severe wear, damaged joints, or suspected balance or alignment problems, it is advisable to consult a qualified mechanic or drivetrain specialist. They can conduct thorough inspections, provide accurate diagnoses, and perform the necessary repairs or replacements to ensure the rear drive shaft’s longevity and proper functioning.

7. Follow Manufacturer Guidelines:

Always refer to the vehicle manufacturer’s guidelines and recommendations for maintenance practices specific to your vehicle’s rear drive shaft. Manufacturers provide valuable information regarding maintenance intervals, lubrication requirements, inspection procedures, and other important considerations. Adhering to these guidelines ensures that you follow the best practices and requirements specified for your particular drive shaft model, contributing to its prolonged lifespan.

In summary, regular inspection, proper lubrication, balancing and alignment, protection from moisture and contaminants, proper torque and fastener inspection, professional maintenance and repairs when necessary, and following manufacturer guidelines are essential maintenance practices for prolonging the lifespan of rear drive shafts. By implementing these practices, you can enhance the reliability, durability, and performanceof the rear drive shaft, ultimately extending its lifespan and reducing the risk of unexpected failures or costly repairs.

pto shaft

Can Rear Drive Shafts Be Customized for Specific Vehicle Configurations or Upgrades?

Rear drive shafts can indeed be customized to accommodate specific vehicle configurations or upgrades. Customization allows for optimal fitment, performance, and compatibility with modified drivetrain systems or unique vehicle configurations. Here’s a detailed explanation of how rear drive shafts can be customized for specific vehicle configurations or upgrades:

1. Length and Diameter:

Custom rear drive shafts can be manufactured with specific lengths and diameters to suit different vehicle configurations. When modifying a vehicle’s drivetrain, such as installing a lift kit, altering suspension components, or changing the transmission or differential, the drive shaft’s length and diameter may need to be adjusted accordingly. Modifying these dimensions ensures proper alignment and engagement with the transmission output shaft and differential input flange, allowing for smooth and efficient power transfer.

2. Material Selection:

Custom rear drive shafts can be crafted from different materials depending on the specific vehicle requirements or upgrades. While steel is commonly used for its strength and durability, alternative materials like aluminum or carbon fiber can be chosen to reduce weight and improve overall vehicle performance. The choice of material will depend on factors such as the vehicle’s weight, power output, intended use, and budget considerations.

3. U-Joints and CV Joints:

U-joints and CV joints are critical components of rear drive shafts, allowing for flex and rotational movement while transmitting torque. When customizing a rear drive shaft, the type and size of U-joints or CV joints can be selected based on the specific vehicle configuration or upgrade. Heavy-duty or high-performance U-joints or CV joints may be chosen to handle increased power, torque, or off-road demands. Upgraded joints can provide improved strength, reliability, and articulation angles, ensuring optimal performance in modified drivetrain setups.

4. Balancing and Harmonics:

Custom rear drive shafts can be carefully balanced to minimize vibrations and harmonics. Balancing is crucial to ensure smooth operation and prevent excessive wear on drivetrain components. When modifying or upgrading the vehicle’s drivetrain, changes in weight distribution, rotational speeds, or component stiffness can affect the dynamic balance of the drive shaft. Custom balancing techniques, such as precision weights or dynamic balancing machines, can be employed to achieve optimal balance and reduce vibrations, ensuring a comfortable and reliable driving experience.

5. Performance Enhancements:

Custom rear drive shafts can be tailored to enhance performance in specific vehicle configurations or upgrades. For example, in high-performance applications or off-road vehicles, reinforced drive shafts with thicker walls or additional gussets can be fabricated to handle increased power and torque loads. Upgraded materials, such as heat-treated alloys, can be utilized to improve strength and durability. By customizing the rear drive shaft, vehicle owners can ensure that the drivetrain system can effectively handle the demands of their specific applications.

6. Compatibility with Differential Ratios:

When changing the differential gear ratios in a vehicle, the rear drive shaft’s rotational speed and torque requirements may be affected. Custom rear drive shafts can be designed to accommodate these changes in gear ratios, ensuring proper torque transmission and maintaining compatibility between the transmission, transfer case (if applicable), and the differential. This customization helps maintain optimal drivetrain performance and prevents potential driveline vibrations or failures that may arise from mismatched gear ratios.

7. Professional Consultation and Expertise:

Customizing rear drive shafts for specific vehicle configurations or upgrades often requires professional consultation and expertise. Working with experienced drivetrain specialists, automotive engineers, or aftermarket manufacturers can help ensure that the customization aligns with the vehicle’s requirements and performance goals. These experts can provide valuable insights and recommendations, taking into account factors such as vehicle weight, powertrain modifications, intended use, and budget constraints.

In summary, rear drive shafts can be customized to suit specific vehicle configurations or upgrades. Customization options include adjusting the length and diameter, selecting appropriate materials, choosing the right type and size of U-joints or CV joints, balancing the drive shaft, incorporating performance enhancements, ensuring compatibility with differential ratios, and seeking professional consultation and expertise. By customizing rear drive shafts, vehicle owners can optimize drivetrain performance, ensure compatibility with modified configurations, and meet the unique demands of their specific applications or upgrades.

pto shaft

Which Types of Vehicles Commonly Use Rear Drive Shafts in Their Drivetrain?

Rear drive shafts are a common feature in several types of vehicles, particularly those that utilize rear-wheel drive (RWD) or four-wheel drive (4WD) drivetrain configurations. These vehicles rely on rear drive shafts to transmit power from the engine or transmission to the rear wheels. Here’s a detailed explanation of the types of vehicles that commonly use rear drive shafts in their drivetrain:

1. Rear-Wheel Drive (RWD) Vehicles:

Rear drive shafts are most commonly found in RWD vehicles. In RWD configurations, the engine’s power is sent to the rear wheels through the transmission and rear differential. The rear drive shaft connects the output of the transmission or transfer case to the input of the rear differential, allowing power transmission to the rear wheels. This setup is commonly used in sports cars, luxury sedans, pickup trucks, and some SUVs.

2. Four-Wheel Drive (4WD) and All-Wheel Drive (AWD) Vehicles:

Many 4WD and AWD vehicles also utilize rear drive shafts as part of their drivetrain systems. These vehicles provide power to all four wheels, enhancing traction and off-road capability. In 4WD systems, the rear drive shaft transfers power from the transfer case to the rear differential and front differential, enabling torque distribution to both the front and rear wheels. This setup is commonly found in off-road vehicles, SUVs, trucks, and some performance cars.

3. Trucks and Commercial Vehicles:

Rear drive shafts are essential components in trucks and commercial vehicles. These vehicles often have rear-wheel drive or part-time 4WD systems to handle heavy loads, towing, and demanding work conditions. The rear drive shafts in trucks and commercial vehicles are designed to endure higher torque and load capacities, ensuring reliable power transmission to the rear wheels.

4. SUVs and Crossovers:

Many SUVs and crossovers employ rear drive shafts, especially those with RWD or 4WD/AWD configurations. These vehicles often prioritize versatility, off-road capability, and towing capacity. Rear drive shafts enable power transmission to the rear wheels, enhancing traction and stability both on and off the road. SUVs and crossovers with 4WD or AWD systems can distribute torque to all four wheels, improving performance in various weather and terrain conditions.

5. Performance and Sports Cars:

Performance and sports cars frequently utilize rear drive shafts as part of their drivetrain systems. RWD configurations are common in these vehicles, as they offer better weight distribution, improved handling, and enhanced control during high-performance driving. Rear drive shafts enable efficient power delivery to the rear wheels, contributing to the vehicle’s acceleration, stability, and overall performance.

6. Muscle Cars and Classic Vehicles:

Muscle cars and classic vehicles often feature rear drive shafts due to their traditional RWD setups. These vehicles evoke a nostalgic driving experience and typically prioritize power and rear-wheel traction. Rear drive shafts play a crucial role in transmitting power and torque from the engine to the rear wheels, allowing muscle cars and classic vehicles to deliver the desired performance and driving dynamics.

In summary, rear drive shafts are commonly found in various types of vehicles, including RWD vehicles, 4WD/AWD vehicles, trucks, SUVs, crossovers, performance cars, muscle cars, and classic vehicles. These vehicles rely on rear drive shafts to transmit power from the engine or transmission to the rear wheels, ensuring efficient power delivery, traction, and drivetrain performance.

China Good quality 5273310ab Rear Drive Cardan Shaft Driveshaft for Jeep Patriot / Compass for Dodge Caliber 2011 2008-2016 Propshaft  China Good quality 5273310ab Rear Drive Cardan Shaft Driveshaft for Jeep Patriot / Compass for Dodge Caliber 2011 2008-2016 Propshaft
editor by CX 2024-04-03

China Good quality Car Auto Spare Parts Front Rear CV Axle Drive Shaft for CHINAMFG CHINAMFG Honda CHINAMFG Mazda CHINAMFG CHINAMFG CHINAMFG Land Rover Jeep

Product Description

Product Description

Product Name Car Auto Spare Parts Front Rear CV Axle Drive Shaft for CZPT CZPT Honda CZPT Mazda CZPT CZPT CZPT Land Rover Jeep
OEM NO. According to Clients’ Needs
Car Model For Japanese Cars
Gross Weight [kg] OEM Standard
Number of Ribs OEM Standard
Voltage [V] OEM Standard
Alternator Charge Current [A] OEM Standard
Color Same as pictrue
Material Plastic+Metal
Warranty 1 Year
MOQ 1PC if we have stock, 50PCS for production.
Delivery Time 7-45 days
Our Advantage 1. Advanced design and skilled workmanship gurantee the standard of our products; 

2. High-quality raw materials gurantee the good performance of our products; 

3.Experienced teams and mangement gurantee the production efficiency and the delivery time; 

4.Our good service bring you pleasant purchase. 

5. The same length as original one. 

6. Lower MOQ is acceptable with more models. 

7.Laser Mark for free. 

8.Pallet with Film for free.

Detailed Photos

After-sales Service: 12 Months
Condition: 100% Brand New
Certification: ISO
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

Are there any limitations or disadvantages associated with drive shafts?

While drive shafts are widely used and offer several advantages, they also have certain limitations and disadvantages that should be considered. Here’s a detailed explanation of the limitations and disadvantages associated with drive shafts:

1. Length and Misalignment Constraints:

Drive shafts have a maximum practical length due to factors such as material strength, weight considerations, and the need to maintain rigidity and minimize vibrations. Longer drive shafts can be prone to increased bending and torsional deflection, leading to reduced efficiency and potential driveline vibrations. Additionally, drive shafts require proper alignment between the driving and driven components. Misalignment can cause increased wear, vibrations, and premature failure of the drive shaft or its associated components.

2. Limited Operating Angles:

Drive shafts, especially those using U-joints, have limitations on operating angles. U-joints are typically designed to operate within specific angular ranges, and operating beyond these limits can result in reduced efficiency, increased vibrations, and accelerated wear. In applications requiring large operating angles, constant velocity (CV) joints are often used to maintain a constant speed and accommodate greater angles. However, CV joints may introduce higher complexity and cost compared to U-joints.

3. Maintenance Requirements:

Drive shafts require regular maintenance to ensure optimal performance and reliability. This includes periodic inspection, lubrication of joints, and balancing if necessary. Failure to perform routine maintenance can lead to increased wear, vibrations, and potential driveline issues. Maintenance requirements should be considered in terms of time and resources when using drive shafts in various applications.

4. Noise and Vibration:

Drive shafts can generate noise and vibrations, especially at high speeds or when operating at certain resonant frequencies. Imbalances, misalignment, worn joints, or other factors can contribute to increased noise and vibrations. These vibrations may affect the comfort of vehicle occupants, contribute to component fatigue, and require additional measures such as dampers or vibration isolation systems to mitigate their effects.

5. Weight and Space Constraints:

Drive shafts add weight to the overall system, which can be a consideration in weight-sensitive applications, such as automotive or aerospace industries. Additionally, drive shafts require physical space for installation. In compact or tightly packaged equipment or vehicles, accommodating the necessary drive shaft length and clearances can be challenging, requiring careful design and integration considerations.

6. Cost Considerations:

Drive shafts, depending on their design, materials, and manufacturing processes, can involve significant costs. Customized or specialized drive shafts tailored to specific equipment requirements may incur higher expenses. Additionally, incorporating advanced joint configurations, such as CV joints, can add complexity and cost to the drive shaft system.

7. Inherent Power Loss:

Drive shafts transmit power from the driving source to the driven components, but they also introduce some inherent power loss due to friction, bending, and other factors. This power loss can reduce overall system efficiency, particularly in long drive shafts or applications with high torque requirements. It is important to consider power loss when determining the appropriate drive shaft design and specifications.

8. Limited Torque Capacity:

While drive shafts can handle a wide range of torque loads, there are limits to their torque capacity. Exceeding the maximum torque capacity of a drive shaft can lead to premature failure, resulting in downtime and potential damage to other driveline components. It is crucial to select a drive shaft with sufficient torque capacity for the intended application.

Despite these limitations and disadvantages, drive shafts remain a widely used and effective means of power transmission in various industries. Manufacturers continuously work to address these limitations through advancements in materials, design techniques, joint configurations, and balancing processes. By carefully considering the specific application requirements and potential drawbacks, engineers and designers can mitigate the limitations and maximize the benefits of drive shafts in their respective systems.

pto shaft

How do drive shafts contribute to the efficiency of vehicle propulsion and power transmission?

Drive shafts play a crucial role in the efficiency of vehicle propulsion and power transmission systems. They are responsible for transferring power from the engine or power source to the wheels or driven components. Here’s a detailed explanation of how drive shafts contribute to the efficiency of vehicle propulsion and power transmission:

1. Power Transfer:

Drive shafts transmit power from the engine or power source to the wheels or driven components. By efficiently transferring rotational energy, drive shafts enable the vehicle to move forward or drive the machinery. The design and construction of drive shafts ensure minimal power loss during the transfer process, maximizing the efficiency of power transmission.

2. Torque Conversion:

Drive shafts can convert torque from the engine or power source to the wheels or driven components. Torque conversion is necessary to match the power characteristics of the engine with the requirements of the vehicle or machinery. Drive shafts with appropriate torque conversion capabilities ensure that the power delivered to the wheels is optimized for efficient propulsion and performance.

3. Constant Velocity (CV) Joints:

Many drive shafts incorporate Constant Velocity (CV) joints, which help maintain a constant speed and efficient power transmission, even when the driving and driven components are at different angles. CV joints allow for smooth power transfer and minimize vibration or power losses that may occur due to changing operating angles. By maintaining constant velocity, drive shafts contribute to efficient power transmission and improved overall vehicle performance.

4. Lightweight Construction:

Efficient drive shafts are often designed with lightweight materials, such as aluminum or composite materials. Lightweight construction reduces the rotational mass of the drive shaft, which results in lower inertia and improved efficiency. Reduced rotational mass enables the engine to accelerate and decelerate more quickly, allowing for better fuel efficiency and overall vehicle performance.

5. Minimized Friction:

Efficient drive shafts are engineered to minimize frictional losses during power transmission. They incorporate features such as high-quality bearings, low-friction seals, and proper lubrication to reduce energy losses caused by friction. By minimizing friction, drive shafts enhance power transmission efficiency and maximize the available power for propulsion or operating other machinery.

6. Balanced and Vibration-Free Operation:

Drive shafts undergo dynamic balancing during the manufacturing process to ensure smooth and vibration-free operation. Imbalances in the drive shaft can lead to power losses, increased wear, and vibrations that reduce overall efficiency. By balancing the drive shaft, it can spin evenly, minimizing vibrations and optimizing power transmission efficiency.

7. Maintenance and Regular Inspection:

Proper maintenance and regular inspection of drive shafts are essential for maintaining their efficiency. Regular lubrication, inspection of joints and components, and prompt repair or replacement of worn or damaged parts help ensure optimal power transmission efficiency. Well-maintained drive shafts operate with minimal friction, reduced power losses, and improved overall efficiency.

8. Integration with Efficient Transmission Systems:

Drive shafts work in conjunction with efficient transmission systems, such as manual, automatic, or continuously variable transmissions. These transmissions help optimize power delivery and gear ratios based on driving conditions and vehicle speed. By integrating with efficient transmission systems, drive shafts contribute to the overall efficiency of the vehicle propulsion and power transmission system.

9. Aerodynamic Considerations:

In some cases, drive shafts are designed with aerodynamic considerations in mind. Streamlined drive shafts, often used in high-performance or electric vehicles, minimize drag and air resistance to improve overall vehicle efficiency. By reducing aerodynamic drag, drive shafts contribute to the efficient propulsion and power transmission of the vehicle.

10. Optimized Length and Design:

Drive shafts are designed to have optimal lengths and designs to minimize energy losses. Excessive drive shaft length or improper design can introduce additional rotational mass, increase bending stresses, and result in energy losses. By optimizing the length and design, drive shafts maximize power transmission efficiency and contribute to improved overall vehicle efficiency.

Overall, drive shafts contribute to the efficiency of vehicle propulsion and power transmission through effective power transfer, torque conversion, utilization of CV joints, lightweight construction, minimized friction, balanced operation, regular maintenance, integration with efficient transmission systems, aerodynamic considerations, and optimized length and design. By ensuring efficient power delivery and minimizing energy losses, drive shafts play a significant role in enhancing the overall efficiency and performance of vehicles and machinery.

pto shaft

How do drive shafts contribute to transferring rotational power in various applications?

Drive shafts play a crucial role in transferring rotational power from the engine or power source to the wheels or driven components in various applications. Whether it’s in vehicles or machinery, drive shafts enable efficient power transmission and facilitate the functioning of different systems. Here’s a detailed explanation of how drive shafts contribute to transferring rotational power:

1. Vehicle Applications:

In vehicles, drive shafts are responsible for transmitting rotational power from the engine to the wheels, enabling the vehicle to move. The drive shaft connects the gearbox or transmission output shaft to the differential, which further distributes the power to the wheels. As the engine generates torque, it is transferred through the drive shaft to the wheels, propelling the vehicle forward. This power transfer allows the vehicle to accelerate, maintain speed, and overcome resistance, such as friction and inclines.

2. Machinery Applications:

In machinery, drive shafts are utilized to transfer rotational power from the engine or motor to various driven components. For example, in industrial machinery, drive shafts may be used to transmit power to pumps, generators, conveyors, or other mechanical systems. In agricultural machinery, drive shafts are commonly employed to connect the power source to equipment such as harvesters, balers, or irrigation systems. Drive shafts enable these machines to perform their intended functions by delivering rotational power to the necessary components.

3. Power Transmission:

Drive shafts are designed to transmit rotational power efficiently and reliably. They are capable of transferring substantial amounts of torque from the engine to the wheels or driven components. The torque generated by the engine is transmitted through the drive shaft without significant power losses. By maintaining a rigid connection between the engine and the driven components, drive shafts ensure that the power produced by the engine is effectively utilized in performing useful work.

4. Flexible Coupling:

One of the key functions of drive shafts is to provide a flexible coupling between the engine/transmission and the wheels or driven components. This flexibility allows the drive shaft to accommodate angular movement and compensate for misalignment between the engine and the driven system. In vehicles, as the suspension system moves or the wheels encounter uneven terrain, the drive shaft adjusts its length and angle to maintain a constant power transfer. This flexibility helps prevent excessive stress on the drivetrain components and ensures smooth power transmission.

5. Torque and Speed Transmission:

Drive shafts are responsible for transmitting both torque and rotational speed. Torque is the rotational force generated by the engine or power source, while rotational speed is the number of revolutions per minute (RPM). Drive shafts must be capable of handling the torque requirements of the application without excessive twisting or bending. Additionally, they need to maintain the desired rotational speed to ensure the proper functioning of the driven components. Proper design, material selection, and balancing of the drive shafts contribute to efficient torque and speed transmission.

6. Length and Balance:

The length and balance of drive shafts are critical factors in their performance. The length of the drive shaft is determined by the distance between the engine or power source and the driven components. It should be appropriately sized to avoid excessive vibrations or bending. Drive shafts are carefully balanced to minimize vibrations and rotational imbalances, which can affect the overall performance, comfort, and longevity of the drivetrain system.

7. Safety and Maintenance:

Drive shafts require proper safety measures and regular maintenance. In vehicles, drive shafts are often enclosed within a protective tube or housing to prevent contact with moving parts, reducing the risk of injury. Safety shields or guards may also be installed around exposed drive shafts in machinery to protect operators from potential hazards. Regular maintenance includes inspecting the drive shaft for wear, damage, or misalignment, and ensuring proper lubrication of the U-joints. These measures help prevent failures, ensure optimal performance, and extend the service life of the drive shaft.

In summary, drive shafts play a vital role in transferring rotational power in various applications. Whether in vehicles or machinery, drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. They provide a flexible coupling, handle torque and speed transmission, accommodate angular movement, and contribute to the safety and maintenance of the system. By effectively transferring rotational power, drive shafts facilitate the functioning and performance of vehicles and machinery in numerous industries.

China Good quality Car Auto Spare Parts Front Rear CV Axle Drive Shaft for CHINAMFG CHINAMFG Honda CHINAMFG Mazda CHINAMFG CHINAMFG CHINAMFG Land Rover Jeep  China Good quality Car Auto Spare Parts Front Rear CV Axle Drive Shaft for CHINAMFG CHINAMFG Honda CHINAMFG Mazda CHINAMFG CHINAMFG CHINAMFG Land Rover Jeep
editor by CX 2023-12-14

China 65-9773 53008427 for Jeep Grand Cherokee 1993-1995 Front Drive Shaft / Propeller Shaft +600 Items drive shaft equipment

Product Description

 

Propeller Shaft for JEEP

OEM

Application

OEM

Software

sixty five-9820

for JEEP Cherokee

52111597AA

for JEEP Liberty

530 0571 2AC

for JEEP Cherokee

65-9326

for JEEP Liberty

5215710AD/ 5215710AB

for JEEP Commander

65-3/8822 0571 8

45710-S10-A01

12344543

27111-SC571

936-571

45710-S9A-E01

936-911

27111-AJ13D

936-034

45710-S9A-J01

936-916

27101-84C00

for MITSUBISHI/NISSAN

for TOYOTA

CARDONE

OE

CARDONE

OE

sixty five-3009

MR580626

65-5007

37140-35180

sixty five-6000

3401A571

sixty five-9842

37140-35040

65-9480

37000-JM14A

65-5571

37100-3D250

65-9478

37000-S3805

sixty five-5030

37100-34120

sixty five-6004

37000-S4203

65-9265

37110-3D070

65-6571

37041-90062

sixty five-9376

37110-35880

936-262

37041-90014

sixty five-5571

37110-3D220

938-030

37300-F3600

65-5571

37100-34111

936-363

37000-7C002

sixty five-5018

37110-3D060

938-two hundred

37000-7C001

65-5012

37100-5712

for KOREA Vehicle

for HYUNDAI/KIA

CARDONE

OE

CARDONE

OE

65-3502

49571-H1031

936-211

49100-3E450

sixty five-3503

49300-2S000

936-210

49100-3E400

sixty five-3500

49300-0L000

936-200

49300-2P500


 


KOWA is a specific manufacturer emphasis on Propeller shaft principal for The us and Europe market.

It is a manufacturer developed by NINGBNO CZPT Automobile PARTSCo.,ltd, who has been manufacturing
and buying and selling all kinds of auto components for a lot more than ten many years.

 

KOWA brand name with 1 yr top quality assurance at the factory cost by MOQ 5pcs


Condition: New
Color: Black
Certification: ISO
Material: Steel
Product Name: Propeller Shaft / Drive Shaft / Transmission Shaft
Application: for Jeep Compass Commander Liberty Grand Cherokee

###

Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Propeller Shaft for JEEP
OEM
Application
OEM
Application
65-9820
for JEEP Cherokee
52111597AA
for JEEP Liberty
53005542AC
for JEEP Cherokee
65-9326
for JEEP Liberty
52105760AD/ 52105760AB
for JEEP Commander
65-3002
for JEEP Patriot
52853431AA
for JEEP Commander
65-9766
for JEEP Wrangler
5273310AB
for JEEP Compass
65-9765
for JEEP Wrangler
52853641AD
for JEEP Durango
65-9315
for JEEP Wrangler
52853642AD
for JEEP Durango
65-9316
for JEEP Wrangler
65-9767
for JEEP Grand Cherokee
68060040AA
for JEEP Grand Cherokee
52105728AE
for JEEP Grand Cherokee
52853646AE
for JEEP Grand Cherokee
For more items pls contact us

###

for AMERICA CAR
for BUICK/CADILLAC
for CHRYSLER
CARDONE
OE
CARDONE
OE
65-1000
22829136
65-9196
52123196AA
65-9353
15036982
65-3014
4593679AC
65-1011
15902927
65-9195
52853017AB
65-9361
22845694
65-3013
52853017AF
65-1010
25822589
65-3015
52123197AA
for JEEP
for CHEVY/CHEVROLET
CARDONE
OE
CARDONE
OE
65-9766
52111597AA
65-9146
15113831
65-9779
52123558AA
65-9145
15763590
65-9669
52853346AD
65-9359
15011500
65-9773
52853321AC
65-9348
15114531
65-9761
52105884AA
65-9351
19259831
65-9771
52105758AC
65-9336
19152721
65-9765
52105726AE
65-9344
15024402
65-9315
52123514AD
65-9338
15109388
65-9764
52853646AC
65-9827
15087453
65-9326
52123627A
65-9528
15090195
65-9767
52853119AC
65-9333
15719954
65-3005
52853329AB
65-9306
15769055
65-3018
52099498AD
65-9347
25976620
65-9324
52123612AC
65-9369
15016994
65-9313
22713657
65-9337
15016993
65-9776
52853432AA
65-9339
10382040
65-9820
52099486AC
65-9346
15024431
65-3007
52105728AC
65-9329
15271519
65-9751
68022107AC
65-9527
25775919
for FORD
for DODGE
CARDONE
OE
CARDONE
OE
65-9451
F77A4376BB
65-9514
52105981AC
65-9293
XL2Z4A376AA
65-9327
52105993AB
65-9453
ZZR025100
65-9711
52853143AB
65-9112
8L3Z4R602B
65-9103
52105931AE
65-9451
5L344K145TC
65-9197
4593857AB
65-9293
5L344K145TD
65-9539
5273310AA
65-9792
XL2Z-4A376-AA
65-9541
9064104301
65-9462
ZZR0-25-100
65-9198
52853642AC
65-9400
1L2Z4A376AA
65-9536
53005551
65-9823
DL3Z4R602B
65-9538
52123112AA
65-9440
6R3Z4602B
65-9151
52853364AF
65-9110
7A2Z4R602N
65-9534
52105860AA
65-9114
F75Z4A376BB
65-9319
52853363AB
65-9116
F81Z4A376PA
65-9537
52853363AE
65-9442
5C3Z4A376A
65-9548
53006781
65-9443
BL8Z4R602A
65-9701
68006622AA
for GMC/HUMMER
CARDONE
OE
CARDONE
OE
65-9371
25776616
65-9492
10376298
for EUROPE CAR
FOR AUDI/BMW
for LAND ROVER/VOLVO/VW
CARDONE
OE
CARDONE
OE
65-7011
26107551199
65-9271
TVB000190
65-7004
26107527355
657-050
TVB000040
65-7045
26101226417
65-7022
LR007035
65-7058
26111226439
65-7012
30735027
65-7061
26103402134
65-7009
302510056
65-7016
26203401609
65-7010
7L6521101G
65-7018
7L0521101D
936-881
30735566
65-7019
7L0521101H
936-879
31256001
65-7020
4B0521106C
936-877
30713272
65-7048
4F0521101F
976-252
8689886
65-7055
4F0521101B
936-880
30783345
65-7017
8R0521101B
936-876
30713371
for MERCEDES
CARDONE
OE
CARDONE
OE
65-7041
9064102116
65-7042
9064100106
65-7002
9064104406
65-7040
2E1521293
65-7053
9064102016
65-7003
6394103606
936-337
1634100702
936-037
2044102601
936-321
6394107006
938-241
2514102102
for JAPAN CAR
for ACURA/HONDA
for SUBARU
CARDONE
OE
CARDONE
OE
65-4004
40100-S3V-A21
65-7013
27111-AG01A
65-4002
40100-S3V-A22
65-7032
27111-AG05A
65-4003
40100-TZ6-A21
65-7005
27111-AG07A
986-298
40100-S10-A01
12344543
27111-SC021
936-024
40100-S9A-E01
936-911
27111-AJ13D
936-034
40100-S9A-J01
936-916
27101-84C00
for MITSUBISHI/NISSAN
for TOYOTA
CARDONE
OE
CARDONE
OE
65-3009
MR580626
65-5007
37140-35180
65-6000
3401A022
65-9842
37140-35040
65-9480
37000-JM14A
65-5023
37100-3D250
65-9478
37000-S3805
65-5030
37100-34120
65-6004
37000-S4203
65-9265
37110-3D070
65-6010
37041-90062
65-9376
37110-35880
936-262
37041-90014
65-5027
37110-3D220
938-030
37300-F3600
65-5010
37100-34111
936-363
37000-7C002
65-5018
37110-3D060
938-200
37000-7C001
65-5012
37100-04342
for KOREA CAR
for HYUNDAI/KIA
CARDONE
OE
CARDONE
OE
65-3502
49010-H1031
936-211
49100-3E450
65-3503
49300-2S000
936-210
49100-3E400
65-3500
49300-0L000
936-200
49300-2P500
Condition: New
Color: Black
Certification: ISO
Material: Steel
Product Name: Propeller Shaft / Drive Shaft / Transmission Shaft
Application: for Jeep Compass Commander Liberty Grand Cherokee

###

Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Propeller Shaft for JEEP
OEM
Application
OEM
Application
65-9820
for JEEP Cherokee
52111597AA
for JEEP Liberty
53005542AC
for JEEP Cherokee
65-9326
for JEEP Liberty
52105760AD/ 52105760AB
for JEEP Commander
65-3002
for JEEP Patriot
52853431AA
for JEEP Commander
65-9766
for JEEP Wrangler
5273310AB
for JEEP Compass
65-9765
for JEEP Wrangler
52853641AD
for JEEP Durango
65-9315
for JEEP Wrangler
52853642AD
for JEEP Durango
65-9316
for JEEP Wrangler
65-9767
for JEEP Grand Cherokee
68060040AA
for JEEP Grand Cherokee
52105728AE
for JEEP Grand Cherokee
52853646AE
for JEEP Grand Cherokee
For more items pls contact us

###

for AMERICA CAR
for BUICK/CADILLAC
for CHRYSLER
CARDONE
OE
CARDONE
OE
65-1000
22829136
65-9196
52123196AA
65-9353
15036982
65-3014
4593679AC
65-1011
15902927
65-9195
52853017AB
65-9361
22845694
65-3013
52853017AF
65-1010
25822589
65-3015
52123197AA
for JEEP
for CHEVY/CHEVROLET
CARDONE
OE
CARDONE
OE
65-9766
52111597AA
65-9146
15113831
65-9779
52123558AA
65-9145
15763590
65-9669
52853346AD
65-9359
15011500
65-9773
52853321AC
65-9348
15114531
65-9761
52105884AA
65-9351
19259831
65-9771
52105758AC
65-9336
19152721
65-9765
52105726AE
65-9344
15024402
65-9315
52123514AD
65-9338
15109388
65-9764
52853646AC
65-9827
15087453
65-9326
52123627A
65-9528
15090195
65-9767
52853119AC
65-9333
15719954
65-3005
52853329AB
65-9306
15769055
65-3018
52099498AD
65-9347
25976620
65-9324
52123612AC
65-9369
15016994
65-9313
22713657
65-9337
15016993
65-9776
52853432AA
65-9339
10382040
65-9820
52099486AC
65-9346
15024431
65-3007
52105728AC
65-9329
15271519
65-9751
68022107AC
65-9527
25775919
for FORD
for DODGE
CARDONE
OE
CARDONE
OE
65-9451
F77A4376BB
65-9514
52105981AC
65-9293
XL2Z4A376AA
65-9327
52105993AB
65-9453
ZZR025100
65-9711
52853143AB
65-9112
8L3Z4R602B
65-9103
52105931AE
65-9451
5L344K145TC
65-9197
4593857AB
65-9293
5L344K145TD
65-9539
5273310AA
65-9792
XL2Z-4A376-AA
65-9541
9064104301
65-9462
ZZR0-25-100
65-9198
52853642AC
65-9400
1L2Z4A376AA
65-9536
53005551
65-9823
DL3Z4R602B
65-9538
52123112AA
65-9440
6R3Z4602B
65-9151
52853364AF
65-9110
7A2Z4R602N
65-9534
52105860AA
65-9114
F75Z4A376BB
65-9319
52853363AB
65-9116
F81Z4A376PA
65-9537
52853363AE
65-9442
5C3Z4A376A
65-9548
53006781
65-9443
BL8Z4R602A
65-9701
68006622AA
for GMC/HUMMER
CARDONE
OE
CARDONE
OE
65-9371
25776616
65-9492
10376298
for EUROPE CAR
FOR AUDI/BMW
for LAND ROVER/VOLVO/VW
CARDONE
OE
CARDONE
OE
65-7011
26107551199
65-9271
TVB000190
65-7004
26107527355
657-050
TVB000040
65-7045
26101226417
65-7022
LR007035
65-7058
26111226439
65-7012
30735027
65-7061
26103402134
65-7009
302510056
65-7016
26203401609
65-7010
7L6521101G
65-7018
7L0521101D
936-881
30735566
65-7019
7L0521101H
936-879
31256001
65-7020
4B0521106C
936-877
30713272
65-7048
4F0521101F
976-252
8689886
65-7055
4F0521101B
936-880
30783345
65-7017
8R0521101B
936-876
30713371
for MERCEDES
CARDONE
OE
CARDONE
OE
65-7041
9064102116
65-7042
9064100106
65-7002
9064104406
65-7040
2E1521293
65-7053
9064102016
65-7003
6394103606
936-337
1634100702
936-037
2044102601
936-321
6394107006
938-241
2514102102
for JAPAN CAR
for ACURA/HONDA
for SUBARU
CARDONE
OE
CARDONE
OE
65-4004
40100-S3V-A21
65-7013
27111-AG01A
65-4002
40100-S3V-A22
65-7032
27111-AG05A
65-4003
40100-TZ6-A21
65-7005
27111-AG07A
986-298
40100-S10-A01
12344543
27111-SC021
936-024
40100-S9A-E01
936-911
27111-AJ13D
936-034
40100-S9A-J01
936-916
27101-84C00
for MITSUBISHI/NISSAN
for TOYOTA
CARDONE
OE
CARDONE
OE
65-3009
MR580626
65-5007
37140-35180
65-6000
3401A022
65-9842
37140-35040
65-9480
37000-JM14A
65-5023
37100-3D250
65-9478
37000-S3805
65-5030
37100-34120
65-6004
37000-S4203
65-9265
37110-3D070
65-6010
37041-90062
65-9376
37110-35880
936-262
37041-90014
65-5027
37110-3D220
938-030
37300-F3600
65-5010
37100-34111
936-363
37000-7C002
65-5018
37110-3D060
938-200
37000-7C001
65-5012
37100-04342
for KOREA CAR
for HYUNDAI/KIA
CARDONE
OE
CARDONE
OE
65-3502
49010-H1031
936-211
49100-3E450
65-3503
49300-2S000
936-210
49100-3E400
65-3500
49300-0L000
936-200
49300-2P500

How to tell if your driveshaft needs replacing

What is the cause of the unbalanced drive shaft? Unstable U-joint? Your car may make clicking noises while driving. If you can hear it from both sides, it might be time to hand it over to the mechanic. If you’re not sure, read on to learn more. Fortunately, there are many ways to tell if your driveshaft needs replacing.

unbalanced

An unbalanced driveshaft can be the source of strange noises and vibrations in your vehicle. To fix this problem, you should contact a professional. You can try a number of things to fix it, including welding and adjusting the weight. The following are the most common methods. In addition to the methods above, you can use standardized weights to balance the driveshaft. These standardized weights are attached to the shaft by welders.
An unbalanced drive shaft typically produces lateral vibrations per revolution. This type of vibration is usually caused by a damaged shaft, missing counterweights, or a foreign object stuck on the drive shaft. On the other hand, torsional vibrations occur twice per revolution, and they are caused by shaft phase shifts. Finally, critical speed vibration occurs when the RPM of the drive shaft exceeds its rated capacity. If you suspect a driveshaft problem, check the following:
Manually adjusting the imbalance of a drive shaft is not the easiest task. To avoid the difficulty of manual balancing, you can choose to use standardized weights. These weights are fixed on the outer circumference of the drive shaft. The operator can manually position the weight on the shaft with special tools, or use a robot. However, manual balancers have many disadvantages.
air-compressor

unstable

When the angular velocity of the output shaft is not constant, it is unstable. The angular velocity of the output shaft is 0.004 at ph = 29.5 and 1.9 at t = 1.9. The angular velocity of the intermediate shaft is not a problem. But when it’s unstable, the torque applied to it is too much for the machine. It might be a good idea to check the tension on the shaft.
An unstable drive shaft can cause a lot of noise and mechanical vibration. It can lead to premature shaft fatigue failure. CZPT studies the effect of shaft vibration on the rotor bearing system. They investigated the effect of flex coupling misalignment on the vibration of the rotor bearing system. They assume that the vibrational response has two components: x and y. However, this approach has limited application in many situations.
Experimental results show that the presence of cracks in the output shaft may mask the unbalanced excitation characteristics. For example, the presence of superharmonic peaks on the spectrum is characteristic of cracks. The presence of cracks in the output shaft masks unbalanced excitation characteristics that cannot be detected in the transient response of the input shaft. Figure 8 shows that the frequency of the rotor increases at critical speed and decreases as the shaft passes the natural frequency.

Unreliable

If you’re having trouble driving your car, chances are you’ve run into an unreliable driveshaft. This type of drivetrain can cause the wheels to stick or not turn at all, and also limit the overall control of the car. Whatever the reason, these issues should be resolved as soon as possible. Here are some symptoms to look for when diagnosing a driveshaft fault. Let’s take a closer look.
The first symptom you may notice is an unreliable drive shaft. You may feel vibrations, or hear noises under the vehicle. Depending on the cause, it could be a broken joint or a broken shaft. The good news is that driveshaft repairs are generally relatively inexpensive and take less time than a complete drivetrain replacement. If you’re not sure what to do, CZPT has a guide to replacing the U-connector.
One of the most common signs of an unreliable driveshaft is clanging and vibration. These sounds can be caused by worn bushings, loose U-joints, or damaged center bearings. This can cause severe vibration and noise. You can also feel these vibrations through the steering wheel or the floor. An unreliable driveshaft is a symptom of a bigger problem.
air-compressor

Unreliable U-joints

A car with an unreliable U-joint on the drive shaft can be dangerous. A bad u-joint can prevent the vehicle from driving properly and may even cause you trouble. Unreliable u-joints are cheap to replace and you should try getting parts from quality manufacturers. Unreliable U-joints can cause the car to vibrate in the chassis or gear lever. This is a sure sign that your car has been neglected in maintenance.
Replacing a U-joint is not a complicated task, but it requires special tools and a lot of elbow grease. If you don’t have the right tools, or you’re unfamiliar with mechanical terminology, it’s best to seek the help of a mechanic. A professional mechanic will be able to accurately assess the problem and propose an appropriate solution. But if you don’t feel confident enough, you can replace your own U-connector by following a few simple steps.
To ensure the vehicle’s driveshaft is not damaged, check the U-joint for wear and lubrication. If the U-joint is worn, the metal parts are likely to rub against each other, causing wear. The sooner a problem is diagnosed, the faster it can be resolved. Also, the longer you wait, the more you lose on repairs.

damaged drive shaft

The driveshaft is the part of the vehicle that connects the wheels. If the driveshaft is damaged, the wheels may stop turning and the vehicle may slow down or stop moving completely. It bears the weight of the car itself as well as the load on the road. So even a slight bend or break in the drive shaft can have dire consequences. Even a piece of loose metal can become a lethal missile if dropped from a vehicle.
If you hear a screeching noise or growl from your vehicle when shifting gears, your driveshaft may be damaged. When this happens, damage to the u-joint and excessive slack in the drive shaft can result. These conditions can further damage the drivetrain, including the front half. You should replace the driveshaft as soon as you notice any symptoms. After replacing the driveshaft, you can start looking for signs of wear.
A knocking sound is a sign of damage to the drive shaft. If you hear this sound while driving, it may be due to worn couplings, damaged propshaft bearings, or damaged U-joints. In some cases, the knocking noise can even be caused by a damaged U-joint. When this happens, you may need to replace the entire driveshaft, requiring a new one.
air-compressor

Maintenance fees

The cost of repairing a driveshaft varies widely, depending on the type and cause of the problem. A new driveshaft costs between $300 and $1,300, including labor. Repairing a damaged driveshaft can cost anywhere from $200 to $300, depending on the time required and the type of parts required. Symptoms of a damaged driveshaft include unresponsiveness, vibration, chassis noise and a stationary car.
The first thing to consider when estimating the cost of repairing a driveshaft is the type of vehicle you have. Some vehicles have more than one, and the parts used to make them may not be compatible with other cars. Even if the same car has two driveshafts, the damaged ones will cost more. Fortunately, many auto repair shops offer free quotes to repair damaged driveshafts, but be aware that such work can be complicated and expensive.

China 65-9773 53008427 for Jeep Grand Cherokee 1993-1995 Front Drive Shaft / Propeller Shaft +600 Items     drive shaft equipment	China 65-9773 53008427 for Jeep Grand Cherokee 1993-1995 Front Drive Shaft / Propeller Shaft +600 Items     drive shaft equipment
editor by czh 2022-12-20

china sales 52111597AA Front Propeller Shaft for Jeep Liberty 2002-2004 Drive Shaft Manufacturer Sell with Competitve Price Small MOQ manufacturers

Product Description

 

Propeller Shaft for JEEP

OEM

Application

OEM

Software

sixty five-9820

for JEEP Cherokee

52111597AA

for JEEP Liberty

530 0571 2AC

for JEEP Cherokee

65-9326

for JEEP Liberty

5215710AD/ 5215710AB

for JEEP Commander

65-3002

for JEEP Patriot

52853431AA

for JEEP Commander

65-9766

for JEEP CZPT

5273310AB

for JEEP CZPT

65-9765

for JEEP CZPT

52853641AD

for JEEP Durango

sixty five-9315

for JEEP CZPT

52853642AD

for JEEP Durango

sixty five-9316

for JEEP CZPT

sixty five-9767

for JEEP CZPT Cherokee

68060040AA

for JEEP CZPT Cherokee

5215718AE

for JEEP CZPT Cherokee

52853646AE

for JEEP CZPT Cherokee

For a lot more things pls make contact with us

As a specialist maker for propeller shaft, we have +600 objects for all kinds of car, principal ideal
for The usa & EUROPE marketplace.

 

Our gain:

 

1. Total range of goods

two. MOQ qty: 5pcs/objects

3. Shipping on time

4: Guarantee: 1 12 months

five. Develope new things: Free of charge

 

For some products, we have stock, so small get (+5000USD) is welcome.

 

The subsequent items are some of CZPT goods, If you need more details, pls make contact with us for ASAP.
 

for CZPT ICA Auto

for BUICK/CADILLAC

for CHRYSLER

CARDONE

OE

CARDONE

OE

65-1000

22829136

65-9196

52123196AA

sixty five-9353

15036982

65-3014

4593679AC

sixty five-1011

15957127

65-9195

52853017AB

sixty five-9361

22845694

65-3013

52853017AF

sixty five-1571

25822589

sixty five-3015

52123197AA

for JEEP

for CHEVY/CHEVROLET

CARDONE

OE

CARDONE

OE

65-9766

52111597AA

65-9146

15113831

sixty five-9779

52123558AA

sixty five-9145

15763590

sixty five-9669

52853346AD

65-9359

15011500

sixty five-9773

52853321AC

sixty five-9348

15114531

65-9761

52105884AA

65-9351

19259831

sixty five-9771

5215718AC

sixty five-9336

19152721

sixty five-9765

5215716AE

65-9344

15571402

sixty five-9315

52123514AD

65-9338

1515718

sixty five-9764

52853646AC

65-9827

fifteen 0571 53

65-9326

52123627A

sixty five-9528

15 0571 95

65-9767

52853119AC

65-9333

15719954

sixty five-3005

52853329AB

sixty five-9306

15769055

sixty five-3018

5257198AD

sixty five-9347

25976620

65-9324

52123612AC

sixty five-9369

15016994

65-9313

22713657

65-9337

15016993

65-9776

52853432AA

sixty five-9339

10382040

65-9820

5257186AC

sixty five-9346

15571431

65-3007

5215718AC

sixty five-9329

15271519

sixty five-9751

68571107AC

65-9527

25775919

for FORD

for DODGE

CARDONE

OE

CARDONE

OE

65-9451

F77A4376BB

65-9514

5215711AC

sixty five-9293

XL2Z4A376AA

65-9327

5215713AB

65-9453

ZZR571100

sixty five-9711

52853143AB

65-9112

8L3Z4R602B

sixty five-9103

5215711AE

sixty five-9451

5L344K145TC

65-9197

4593857AB

sixty five-9293

5L344K145TD

sixty five-9539

5273310AA

65-9792

XL2Z-4A376-AA

65-9541

9064104301

sixty five-9462

ZZR0-25-one hundred

65-9198

52853642AC

65-9400

1L2Z4A376AA

65-9536

5305711

sixty five-9823

DL3Z4R602B

65-9538

52123112AA

65-9440

6R3Z4602B

sixty five-9151

52853364AF

65-9110

7A2Z4R602N

sixty five-9534

52105860AA

65-9114

F75Z4A376BB

sixty five-9319

52853363AB

65-9116

F81Z4A376PA

65-9537

52853363AE

sixty five-9442

5C3Z4A376A

sixty five-9548

53006781

65-9443

BL8Z4R602A

sixty five-9701

680 0571 2AA

for GMC/HUMMER

CARDONE

OE

CARDONE

OE

sixty five-9371

25776616

65-9492

1 0571 298

for EUROPE Car

FOR AUDI/BMW

for LAND ROVER/VOLVO/VW

CARDONE

OE

CARDONE

OE

65-7011

2615711199

sixty five-9271

TVB000190

sixty five-7004

2615717355

657-050

TVB000040

sixty five-7045

26101226417

65-7571

LR007035

sixty five-7058

26111226439

sixty five-7012

three 0571 571

65-7061

26103457134

sixty five-7009

357110056

sixty five-7016

26203401609

sixty five-7571

7L6521101G

sixty five-7018

7L57101D

936-881

three 0571 566

sixty five-7019

7L57101H

936-879

31256001

sixty five-7571

4B57106C

936-877

three 0571 272

65-7048

4F57101F

976-252

8689886

sixty five-7055

4F57101B

936-880

30783345

sixty five-7017

8R57101B

936-876

3 0571 371

for MERCEDES

CARDONE

OE

CARDONE

OE

65-7041

9064157116

65-7042

906415716

65-7002

9064104406

sixty five-7040

2E1521293

sixty five-7053

9064157116

sixty five-7003

6394103606

936-337

1634100702

936-037

2044102601

936-321

6394107006

938-241

2514157102

for JAPAN Auto

for ACURA/HONDA

for SUBARU

CARDONE

OE

CARDONE

OE

65-4004

45710-S3V-A21

sixty five-7013

27111-AG01A

sixty five-4002

45710-S3V-A22

sixty five-7032

27111-AG05A

sixty five-4003

45710-TZ6-A21

sixty five-7005

27111-AG07A

986~571-8822571/8822 0571 8

45710-S10-A01

12344543

27111-SC571

936-571

45710-S9A-E01

936-911

27111-AJ13D

936-034

45710-S9A-J01

936-916

27101-84C00

for MITSUBISHI/NISSAN

for CZPT TA

CARDONE

OE

CARDONE

OE

65-3009

MR580626

65-5007

37140-35180

sixty five-6000

3401A571

sixty five-9842

37140-35040

65-9480

37000-JM14A

sixty five-5571

37100-3D250

sixty five-9478

37000-S3805

sixty five-5030

37100-34120

sixty five-6004

37000-S4203

65-9265

37110-3D070

sixty five-6571

37041-90062

65-9376

37110-35880

936-262

37041-90014

65-5571

37110-3D220

938-030

37300-F3600

65-5571

37100-34111

936-363

37000-7C002

65-5018

37110-3D060

938-200

37000-7C001

sixty five-5012

37100-5712

for CZPT Vehicle

for HYUNDAI/KIA

CARDONE

OE

CARDONE

OE

65-3502

49571-H1031

936-211

49100-3E450

65-3503

49300-2S000

936-210

49100-3E400

65-3500

49300-0L000

936-two hundred

49300-2P500


 


KOWA is a special manufacturer target on Propeller shaft main for CZPT ica and CZPT pe market.

It is a manufacturer produced by NINGBNO CZPT CZPT CZPT Co.,ltd, who has been production
and buying and selling all sorts of auto components for a lot more than ten a long time.

 

KOWA brand name with 1 12 months good quality assurance at the manufacturing unit cost by MOQ 5pcs


china  revenue 52111597AA Front Propeller Shaft for Jeep Liberty 2002-2004 Generate Shaft Company Sell with Competitve Value Tiny MOQ makers

china Cost 52099497ad Front Drive Shaft for Jeep Grand Cherokee 4.0L Propeller Shaft Manufacturer Price manufacturers

Solution Description

 

Propeller Shaft for JEEP

OEM

Software

OEM

Software

65-9820

for JEEP Cherokee

52111597AA

for JEEP Liberty

530 0571 2AC

for JEEP Cherokee

sixty five-9326

for JEEP Liberty

5215710AD/ 5215710AB

for JEEP Commander

65-3002

for JEEP Patriot

52853431AA

for JEEP Commander

65-9766

for JEEP CZPT

5273310AB

for JEEP CZPT

sixty five-9765

for JEEP CZPT

52853641AD

for JEEP Durango

65-9315

for JEEP CZPT

52853642AD

for JEEP Durango

65-9316

for JEEP CZPT

sixty five-9767

for JEEP CZPT Cherokee

68060040AA

for JEEP CZPT Cherokee

5215718AE

for JEEP CZPT Cherokee

52853646AE

for JEEP CZPT Cherokee

For much more products pls make contact with us

As a professional producer for propeller shaft, we have +600 products for all varieties of auto, primary suitable
for America & EUROPE industry.

 

Our edge:

 

one. Full selection of merchandise

2. MOQ qty: 5pcs/objects

3. Shipping on time

four: Warranty: 1 Calendar year

5. Develope new items: Totally free

 

For some products, we have inventory, so little get (+5000USD) is welcome.

 

The adhering to objects are some of CZPT goods, If you require more information, pls make contact with us for ASAP.
 

for CZPT ICA Vehicle

for BUICK/CADILLAC

for CHRYSLER

CARDONE

OE

CARDONE

OE

sixty five-a thousand

22829136

65-9196

52123196AA

65-9353

15036982

sixty five-3014

4593679AC

65-1011

15957127

65-9195

52853017AB

65-9361

22845694

65-3013

52853017AF

sixty five-1571

25822589

65-3015

52123197AA

for JEEP

for CHEVY/CHEVROLET

CARDONE

OE

CARDONE

OE

sixty five-9766

52111597AA

sixty five-9146

15113831

65-9779

52123558AA

sixty five-9145

15763590

sixty five-9669

52853346AD

sixty five-9359

15011500

65-9773

52853321AC

sixty five-9348

15114531

sixty five-9761

52105884AA

sixty five-9351

19259831

sixty five-9771

5215718AC

sixty five-9336

19152721

65-9765

5215716AE

sixty five-9344

15571402

65-9315

52123514AD

sixty five-9338

1515718

65-9764

52853646AC

65-9827

fifteen 0571 53

sixty five-9326

52123627A

65-9528

fifteen 0571 ninety five

sixty five-9767

52853119AC

65-9333

15719954

65-3005

52853329AB

sixty five-9306

15769055

sixty five-3018

5257198AD

sixty five-9347

25976620

65-9324

52123612AC

sixty five-9369

15016994

sixty five-9313

22713657

65-9337

15016993

sixty five-9776

52853432AA

sixty five-9339

10382040

65-9820

5257186AC

sixty five-9346

15571431

65-3007

5215718AC

sixty five-9329

15271519

sixty five-9751

68571107AC

sixty five-9527

25775919

for FORD

for DODGE

CARDONE

OE

CARDONE

OE

sixty five-9451

F77A4376BB

65-9514

5215711AC

65-9293

XL2Z4A376AA

65-9327

5215713AB

65-9453

ZZR571100

sixty five-9711

52853143AB

sixty five-9112

8L3Z4R602B

65-9103

5215711AE

sixty five-9451

5L344K145TC

sixty five-9197

4593857AB

65-9293

5L344K145TD

sixty five-9539

5273310AA

65-9792

XL2Z-4A376-AA

sixty five-9541

9064104301

sixty five-9462

ZZR0-25-100

65-9198

52853642AC

65-9400

1L2Z4A376AA

65-9536

5305711

65-9823

DL3Z4R602B

65-9538

52123112AA

sixty five-9440

6R3Z4602B

sixty five-9151

52853364AF

sixty five-9110

7A2Z4R602N

65-9534

52105860AA

65-9114

F75Z4A376BB

65-9319

52853363AB

65-9116

F81Z4A376PA

sixty five-9537

52853363AE

sixty five-9442

5C3Z4A376A

sixty five-9548

53006781

sixty five-9443

BL8Z4R602A

sixty five-9701

680 0571 2AA

for GMC/HUMMER

CARDONE

OE

CARDONE

OE

65-9371

25776616

sixty five-9492

one 0571 298

for EUROPE Automobile

FOR AUDI/BMW

for LAND ROVER/VOLVO/VW

CARDONE

OE

CARDONE

OE

65-7011

2615711199

65-9271

TVB000190

65-7004

2615717355

657-050

TVB000040

65-7045

26101226417

sixty five-7571

LR007035

65-7058

26111226439

65-7012

3 0571 571

sixty five-7061

26103457134

sixty five-7009

357110056

sixty five-7016

26203401609

sixty five-7571

7L6521101G

65-7018

7L57101D

936-881

three 0571 566

sixty five-7019

7L57101H

936-879

31256001

sixty five-7571

4B57106C

936-877

three 0571 272

sixty five-7048

4F57101F

976-252

8689886

65-7055

4F57101B

936-880

30783345

65-7017

8R57101B

936-876

three 0571 371

for MERCEDES

CARDONE

OE

CARDONE

OE

65-7041

9064157116

65-7042

906415716

65-7002

9064104406

65-7040

2E1521293

65-7053

9064157116

65-7003

6394103606

936-337

1634100702

936-037

2044102601

936-321

6394107006

938-241

2514157102

for JAPAN Vehicle

for ACURA/HONDA

for SUBARU

CARDONE

OE

CARDONE

OE

65-4004

45710-S3V-A21

65-7013

27111-AG01A

65-4002

45710-S3V-A22

65-7032

27111-AG05A

sixty five-4003

45710-TZ6-A21

65-7005

27111-AG07A

986~571-8822571/8822 0571 8

45710-S10-A01

12344543

27111-SC571

936-571

45710-S9A-E01

936-911

27111-AJ13D

936-034

45710-S9A-J01

936-916

27101-84C00

for MITSUBISHI/NISSAN

for CZPT TA

CARDONE

OE

CARDONE

OE

sixty five-3009

MR580626

65-5007

37140-35180

sixty five-6000

3401A571

65-9842

37140-35040

sixty five-9480

37000-JM14A

sixty five-5571

37100-3D250

sixty five-9478

37000-S3805

65-5030

37100-34120

sixty five-6004

37000-S4203

65-9265

37110-3D070

sixty five-6571

37041-90062

sixty five-9376

37110-35880

936-262

37041-90014

65-5571

37110-3D220

938-030

37300-F3600

sixty five-5571

37100-34111

936-363

37000-7C002

65-5018

37110-3D060

938-200

37000-7C001

sixty five-5012

37100-5712

for CZPT Auto

for HYUNDAI/KIA

CARDONE

OE

CARDONE

OE

65-3502

49571-H1031

936-211

49100-3E450

sixty five-3503

49300-2S000

936-210

49100-3E400

sixty five-3500

49300-0L000

936-two hundred

49300-2P500


 


KOWA is a special manufacturer emphasis on Propeller shaft major for CZPT ica and CZPT pe industry.

It is a model developed by NINGBNO CZPT CZPT CZPT Co.,ltd, who has been manufacturing
and investing all varieties of car elements for far more than 10 many years.

 

KOWA model with 1 calendar year high quality assurance at the manufacturing facility price by MOQ 5pcs


china  Price 52099497ad Entrance Drive Shaft for Jeep Grand Cherokee 4.0L Propeller Shaft Producer Price tag makers

china near me 65-9773 53008427 for Jeep Grand Cherokee 1993-1995 Front Drive Shaft / Propeller Shaft +600 Items manufacturers

Product Description

 

Propeller Shaft for JEEP

OEM

Application

OEM

Software

65-9820

for JEEP Cherokee

52111597AA

for JEEP Liberty

530 0571 2AC

for JEEP Cherokee

65-9326

for JEEP Liberty

5215710AD/ 5215710AB

for JEEP Commander

65-3002

for JEEP Patriot

52853431AA

for JEEP Commander

sixty five-9766

for JEEP CZPT

5273310AB

for JEEP CZPT

65-9765

for JEEP CZPT

52853641AD

for JEEP Durango

sixty five-9315

for JEEP CZPT

52853642AD

for JEEP Durango

sixty five-9316

for JEEP CZPT

sixty five-9767

for JEEP CZPT Cherokee

68060040AA

for JEEP CZPT Cherokee

5215718AE

for JEEP CZPT Cherokee

52853646AE

for JEEP CZPT Cherokee

For far more objects pls get in touch with us

As a professional producer for propeller shaft, we have +600 products for all kinds of auto, principal appropriate
for The us & EUROPE industry.

 

Our advantage:

 

1. Complete variety of goods

2. MOQ qty: 5pcs/things

three. Shipping and delivery on time

four: Guarantee: 1 Year

five. Develope new things: Totally free

 

For some things, we have stock, so modest order (+5000USD) is welcome.

 

The subsequent objects are some of CZPT items, If you want much more data, pls speak to us for ASAP.
 

for CZPT ICA Car

for BUICK/CADILLAC

for CHRYSLER

CARDONE

OE

CARDONE

OE

sixty five-a thousand

22829136

65-9196

52123196AA

65-9353

15036982

65-3014

4593679AC

65-1011

15957127

sixty five-9195

52853017AB

65-9361

22845694

sixty five-3013

52853017AF

sixty five-1571

25822589

sixty five-3015

52123197AA

for JEEP

for CHEVY/CHEVROLET

CARDONE

OE

CARDONE

OE

sixty five-9766

52111597AA

sixty five-9146

15113831

65-9779

52123558AA

sixty five-9145

15763590

sixty five-9669

52853346AD

65-9359

15011500

sixty five-9773

52853321AC

65-9348

15114531

65-9761

52105884AA

sixty five-9351

19259831

sixty five-9771

5215718AC

65-9336

19152721

sixty five-9765

5215716AE

65-9344

15571402

65-9315

52123514AD

65-9338

1515718

65-9764

52853646AC

65-9827

15 0571 53

65-9326

52123627A

sixty five-9528

fifteen 0571 95

sixty five-9767

52853119AC

sixty five-9333

15719954

65-3005

52853329AB

sixty five-9306

15769055

sixty five-3018

5257198AD

sixty five-9347

25976620

sixty five-9324

52123612AC

sixty five-9369

15016994

sixty five-9313

22713657

sixty five-9337

15016993

65-9776

52853432AA

sixty five-9339

10382040

65-9820

5257186AC

65-9346

15571431

65-3007

5215718AC

65-9329

15271519

65-9751

68571107AC

65-9527

25775919

for FORD

for DODGE

CARDONE

OE

CARDONE

OE

65-9451

F77A4376BB

sixty five-9514

5215711AC

sixty five-9293

XL2Z4A376AA

sixty five-9327

5215713AB

sixty five-9453

ZZR571100

65-9711

52853143AB

65-9112

8L3Z4R602B

65-9103

5215711AE

65-9451

5L344K145TC

sixty five-9197

4593857AB

65-9293

5L344K145TD

65-9539

5273310AA

65-9792

XL2Z-4A376-AA

sixty five-9541

9064104301

65-9462

ZZR0-twenty five-one hundred

sixty five-9198

52853642AC

65-9400

1L2Z4A376AA

sixty five-9536

5305711

sixty five-9823

DL3Z4R602B

65-9538

52123112AA

65-9440

6R3Z4602B

65-9151

52853364AF

sixty five-9110

7A2Z4R602N

65-9534

52105860AA

sixty five-9114

F75Z4A376BB

sixty five-9319

52853363AB

65-9116

F81Z4A376PA

65-9537

52853363AE

sixty five-9442

5C3Z4A376A

sixty five-9548

53006781

65-9443

BL8Z4R602A

sixty five-9701

680 0571 2AA

for GMC/HUMMER

CARDONE

OE

CARDONE

OE

sixty five-9371

25776616

65-9492

one 0571 298

for EUROPE Auto

FOR AUDI/BMW

for LAND ROVER/VOLVO/VW

CARDONE

OE

CARDONE

OE

65-7011

2615711199

sixty five-9271

TVB000190

sixty five-7004

2615717355

657-050

TVB000040

sixty five-7045

26101226417

sixty five-7571

LR007035

sixty five-7058

26111226439

65-7012

3 0571 571

sixty five-7061

26103457134

sixty five-7009

357110056

sixty five-7016

26203401609

sixty five-7571

7L6521101G

sixty five-7018

7L57101D

936-881

3 0571 566

sixty five-7019

7L57101H

936-879

31256001

sixty five-7571

4B57106C

936-877

3 0571 272

65-7048

4F57101F

976-252

8689886

sixty five-7055

4F57101B

936-880

30783345

65-7017

8R57101B

936-876

3 0571 371

for MERCEDES

CARDONE

OE

CARDONE

OE

65-7041

9064157116

65-7042

906415716

sixty five-7002

9064104406

sixty five-7040

2E1521293

sixty five-7053

9064157116

sixty five-7003

6394103606

936-337

1634100702

936-037

2044102601

936-321

6394107006

938-241

2514157102

for JAPAN Car

for ACURA/HONDA

for SUBARU

CARDONE

OE

CARDONE

OE

65-4004

45710-S3V-A21

sixty five-7013

27111-AG01A

sixty five-4002

45710-S3V-A22

sixty five-7032

27111-AG05A

65-4003

45710-TZ6-A21

sixty five-7005

27111-AG07A

986~571-8822571/8822 0571 8

45710-S10-A01

12344543

27111-SC571

936-571

45710-S9A-E01

936-911

27111-AJ13D

936-034

45710-S9A-J01

936-916

27101-84C00

for MITSUBISHI/NISSAN

for CZPT TA

CARDONE

OE

CARDONE

OE

sixty five-3009

MR580626

sixty five-5007

37140-35180

sixty five-6000

3401A571

65-9842

37140-35040

65-9480

37000-JM14A

65-5571

37100-3D250

65-9478

37000-S3805

sixty five-5030

37100-34120

65-6004

37000-S4203

65-9265

37110-3D070

65-6571

37041-90062

65-9376

37110-35880

936-262

37041-90014

sixty five-5571

37110-3D220

938-030

37300-F3600

65-5571

37100-34111

936-363

37000-7C002

65-5018

37110-3D060

938-200

37000-7C001

sixty five-5012

37100-5712

for CZPT Car

for HYUNDAI/KIA

CARDONE

OE

CARDONE

OE

sixty five-3502

49571-H1031

936-211

49100-3E450

65-3503

49300-2S000

936-210

49100-3E400

65-3500

49300-0L000

936-two hundred

49300-2P500


 


KOWA is a unique brand name concentrate on Propeller shaft principal for CZPT ica and CZPT pe market place.

It is a brand produced by NINGBNO CZPT CZPT CZPT Co.,ltd, who has been producing
and trading all sorts of vehicle components for more than ten a long time.

 

KOWA brand with 1 yr high quality assurance at the manufacturing unit value by MOQ 5pcs


china  in close proximity to me sixty five-9773 53008427 for Jeep Grand Cherokee 1993-1995 Entrance Push Shaft / Propeller Shaft +600 Items producers