China manufacturer 65-9371 for Chevrolet Silverado 01-06 Rear Prop Drive Shaft Cardan Shaft Manufacture Hot Sell in America Europe Market

Product Description

As a professional manufacturer for propeller shaft, we have +800 items for all kinds of car, main suitable
for AMERICA & EUROPE market.

 

Our advantage:

 

1. Full range of products

2. MOQ qty: 5pcs/items

3. Delivery on time

4: Warranty: 1 YEAR

5. Develope new items: FREE

OEM NO. 65-9371
Application for CHEVROLET Silverado 01-06
Material SS430/45# steel 
Balancing Standrad G16, 3200rpm
Warranty One Year

For some items, we have stock, small order (+3000USD) is welcome.

 

The following items are some of propeller shafts, If you need more information, pls contact us for ASAP.
 

for CHEVROLET PROPELLER SHAFT

OEM

Application

OEM

Application
65-9757 for CHEVROLET 946-199 for CHEVROLET Silverado 1500 07-13
65-9759 for CHEVROLET 2571697 for CHEVROLET Silverado 1500 07-13
65-9355 for CHEVROLET Astro 90-98 10382040 for CHEVROLET Silverado 1500 2006
65-9146 for CHEVROLET Astro 99-05 65-9527 for CHEVROLET Silverado 1500 99-00
65-9395 for CHEVROLET Avalanche 1500 02 65-9307 for CHEVROLET Silverado 1500 99-01
65-9334 for CHEVROLET Blazer 73-74 15094629 for CHEVROLET Silverado 1500 99-05
65-9333 for CHEVROLET Blazer 73-74 15109400 for CHEVROLET Silverado 1500 99-05
65-9369 for CHEVROLET Blazer 92-94 15189834 for CHEVROLET Silverado 1500 99-06
15114531 for CHEVROLET Blazer 95-05 946-047 for CHEVROLET Silverado 1500 99-07
15038493 for CHEVROLET Blazer 96-05 for CHEVROLET Silverado 2500 01
946-030 for CHEVROLET Camaro 10-15 15571402 for CHEVROLET Silverado 2500 01-03
20781756 for CHEVROLET Captiva 10-20 65-9518 for CHEVROLET Silverado 2500 01-06
65-9516 for CHEVROLET Colorado 04-12 65-9520 for CHEVROLET Silverado 2500 01-06
936-291 for CHEVROLET Colorado 04-12 65-9827 for CHEVROLET Silverado 2500 01-07
19259831 for CHEVROLET Equinox 05-06 65-9310 for CHEVROLET Silverado 2500 99-00
19328628 for CHEVROLET Equinox 07-09 15271513 for CHEVROLET Silverado 2500HD 07-10
84139112 for CHEVROLET Equinox 18-20 946-304 for CHEVROLET Silverado 3500 01-06
22889825 for CHEVROLET Express 1500 03-14 15571431 for CHEVROLET Silverado 3500 04-06
1529571 for CHEVROLET EXPRESS 4500 09- 15016993 for CHEVROLET Silverado 3500 Classic 07
65-9338 for CHEVROLET K10 Pickup 77-80 25857887 for CHEVROLET Silverado 3500HD 07-09
2657162 for CHEVROLET K1500 95-98 936-406 for CHEVROLET Traiblazer 06-08
65-9361 for CHEVROLET K1500 95-99 1557115 for CHEVROLET Traiblazer 07-09
65-9362 for CHEVROLET K1500 95-99 65-9329 for CHEVROLET Trailblazer 02-05
65-9337 for CHEVROLET K20 77-80 936-499 for CHEVROLET Trailblazer 02-09
65-9339 for CHEVROLET K20 81-86 65-1000 for CHEVROLET Traverse 09-11
65-9346 for CHEVROLET K2500 88-94 65-9349 for CHEVROLET V1500 SUBURBAN 1991
65-9344 for CHEVROLET K2500 88-94 25857868 for CHEVROLETE Silverado 2500 07-10
65-9348 for CHEVROLET K2500 92-94 84139112  CHEVY Equinox/Terrain 18-20
26038121 for CHEVROLET K2500 95-00 15571424 for CHEVROLET Sierra 3500 01-06
65-9336 for CHEVROLET K30 77-79 65-9371 for CHEVROLET Silverado 01-06
65-9351 for CHEVROLET K30 80-86 15751438 for CHEVROLET Silverado 02-05
65-9353 for CHEVROLET K30 80-86 65-9519 for CHEVROLET Silverado 1500 01-07
65-9347 for CHEVROLET K3500 92-94 10382034 for CHEVROLET SILVERADO 1500 05-06

 

 

After-sales Service: 1 Year
Condition: New
Color: Black
Certification: ISO, IATF
Type: Propeller Shaft/Drive Shaft
Application Brand: Chevrolet
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

How Do Manufacturers Ensure the Compatibility and Quality of Rear Drive Shafts?

Manufacturers employ several measures to ensure the compatibility and quality of rear drive shafts, which are crucial components in a vehicle’s drivetrain system. These measures involve rigorous design, testing, and production processes to meet industry standards and ensure reliable performance. Here’s a detailed explanation of how manufacturers ensure the compatibility and quality of rear drive shafts:

1. Design Specifications and Standards:

Manufacturers follow specific design specifications and standards when developing rear drive shafts. These specifications include parameters such as length, diameter, material selection, torque capacity, and operating conditions. Design guidelines provided by industry organizations, government regulations, and vehicle manufacturers play a crucial role in ensuring compatibility and performance. Adhering to these specifications helps manufacturers produce rear drive shafts that meet the requirements of various vehicle models and drivetrain configurations.

2. Computer-Aided Design (CAD) and Simulation:

Manufacturers use computer-aided design (CAD) software and simulation tools to create virtual models of rear drive shafts. CAD enables precise modeling of shaft geometry, joint types, and connection points. Simulation tools allow manufacturers to analyze the structural integrity, stress distribution, and performance characteristics of the drive shaft under different operating conditions. By simulating and optimizing the design virtually, manufacturers can identify potential issues, ensure compatibility, and optimize the performance of rear drive shafts before physical prototyping and production.

3. Material Selection and Quality Control:

Manufacturers carefully select materials for rear drive shafts to ensure compatibility and durability. High-strength alloys, such as steel or aluminum, are commonly used due to their excellent mechanical properties. The material selection process involves considering factors such as strength, weight, fatigue resistance, and corrosion resistance. Manufacturers also implement strict quality control measures to verify the quality and integrity of the materials used. This includes conducting material testing, such as mechanical testing and metallurgical analysis, to ensure that the selected materials meet the required specifications and performance standards.

4. Prototype Development and Testing:

Manufacturers develop physical prototypes of rear drive shafts for testing and validation purposes. Prototypes are manufactured using the finalized design and materials. They undergo a series of tests to evaluate their performance, including static and dynamic load testing, torsional strength testing, and fatigue testing. These tests help manufacturers assess the compatibility, strength, and durability of the rear drive shafts. By analyzing the test results, manufacturers can identify any design flaws, optimize the performance, and ensure that the drive shafts meet the required performance standards and safety regulations.

5. Manufacturing Processes and Quality Assurance:

Manufacturers employ precise manufacturing processes to ensure the quality and compatibility of rear drive shafts. Advanced machining techniques, such as CNC (Computer Numerical Control) machining, are used to achieve accurate dimensions and tolerances. Welding, heat treatment, and balancing processes are performed to enhance strength, structural integrity, and rotational balance. Quality assurance protocols are implemented throughout the manufacturing process to monitor and control the quality of each component and assembly stage. This includes inspections, dimensional checks, and non-destructive testing methods, such as ultrasonic testing or magnetic particle inspection, to detect any defects or inconsistencies.

6. Compliance with Standards and Certifications:

Manufacturers ensure that rear drive shafts comply with industry standards and certifications. These standards may include ISO (International Organization for Standardization) standards, SAE (Society of Automotive Engineers) standards, or specific vehicle manufacturers’ specifications. Compliance with these standards ensures that the rear drive shafts meet the required performance, safety, and compatibility criteria. Manufacturers undergo audits and certifications to demonstrate their adherence to these standards, providing assurance to customers and end-users about the quality and compatibility of their rear drive shafts.

7. Continuous Improvement and Customer Feedback:

Manufacturers strive for continuous improvement in the design, production, and quality of rear drive shafts. They actively seek feedback from customers, vehicle manufacturers, and industry experts to identify areas for improvement. This feedback helps manufacturers address compatibility issues, optimize performance, and incorporate new technologies and materials into their rear drive shafts. By continuously refining their processes and products, manufacturers ensure that rear drive shafts remain compatible with evolving vehicle technologies and meet the changing needs of the automotive industry.

In summary, manufacturers ensure the compatibility and quality of rear drive shafts through adherence to design specifications and standards, computer-aided design and simulation, careful material selection, prototype development and testing, precise manufacturing processes, compliance with standards and certifications, and a commitment to continuous improvement. These measures collectively ensure that rear drive shafts are compatible with a wide range of vehicle models, drivetrain configurations, and operating conditions. Additionally, they guarantee that rear drive shafts meet the required performance, safety, and quality standards, providing reliable and efficient operation in the vehicle’s drivetrain system.

pto shaft

Can Rear Drive Shafts Be Customized for Specific Vehicle Configurations or Upgrades?

Rear drive shafts can indeed be customized to accommodate specific vehicle configurations or upgrades. Customization allows for optimal fitment, performance, and compatibility with modified drivetrain systems or unique vehicle configurations. Here’s a detailed explanation of how rear drive shafts can be customized for specific vehicle configurations or upgrades:

1. Length and Diameter:

Custom rear drive shafts can be manufactured with specific lengths and diameters to suit different vehicle configurations. When modifying a vehicle’s drivetrain, such as installing a lift kit, altering suspension components, or changing the transmission or differential, the drive shaft’s length and diameter may need to be adjusted accordingly. Modifying these dimensions ensures proper alignment and engagement with the transmission output shaft and differential input flange, allowing for smooth and efficient power transfer.

2. Material Selection:

Custom rear drive shafts can be crafted from different materials depending on the specific vehicle requirements or upgrades. While steel is commonly used for its strength and durability, alternative materials like aluminum or carbon fiber can be chosen to reduce weight and improve overall vehicle performance. The choice of material will depend on factors such as the vehicle’s weight, power output, intended use, and budget considerations.

3. U-Joints and CV Joints:

U-joints and CV joints are critical components of rear drive shafts, allowing for flex and rotational movement while transmitting torque. When customizing a rear drive shaft, the type and size of U-joints or CV joints can be selected based on the specific vehicle configuration or upgrade. Heavy-duty or high-performance U-joints or CV joints may be chosen to handle increased power, torque, or off-road demands. Upgraded joints can provide improved strength, reliability, and articulation angles, ensuring optimal performance in modified drivetrain setups.

4. Balancing and Harmonics:

Custom rear drive shafts can be carefully balanced to minimize vibrations and harmonics. Balancing is crucial to ensure smooth operation and prevent excessive wear on drivetrain components. When modifying or upgrading the vehicle’s drivetrain, changes in weight distribution, rotational speeds, or component stiffness can affect the dynamic balance of the drive shaft. Custom balancing techniques, such as precision weights or dynamic balancing machines, can be employed to achieve optimal balance and reduce vibrations, ensuring a comfortable and reliable driving experience.

5. Performance Enhancements:

Custom rear drive shafts can be tailored to enhance performance in specific vehicle configurations or upgrades. For example, in high-performance applications or off-road vehicles, reinforced drive shafts with thicker walls or additional gussets can be fabricated to handle increased power and torque loads. Upgraded materials, such as heat-treated alloys, can be utilized to improve strength and durability. By customizing the rear drive shaft, vehicle owners can ensure that the drivetrain system can effectively handle the demands of their specific applications.

6. Compatibility with Differential Ratios:

When changing the differential gear ratios in a vehicle, the rear drive shaft’s rotational speed and torque requirements may be affected. Custom rear drive shafts can be designed to accommodate these changes in gear ratios, ensuring proper torque transmission and maintaining compatibility between the transmission, transfer case (if applicable), and the differential. This customization helps maintain optimal drivetrain performance and prevents potential driveline vibrations or failures that may arise from mismatched gear ratios.

7. Professional Consultation and Expertise:

Customizing rear drive shafts for specific vehicle configurations or upgrades often requires professional consultation and expertise. Working with experienced drivetrain specialists, automotive engineers, or aftermarket manufacturers can help ensure that the customization aligns with the vehicle’s requirements and performance goals. These experts can provide valuable insights and recommendations, taking into account factors such as vehicle weight, powertrain modifications, intended use, and budget constraints.

In summary, rear drive shafts can be customized to suit specific vehicle configurations or upgrades. Customization options include adjusting the length and diameter, selecting appropriate materials, choosing the right type and size of U-joints or CV joints, balancing the drive shaft, incorporating performance enhancements, ensuring compatibility with differential ratios, and seeking professional consultation and expertise. By customizing rear drive shafts, vehicle owners can optimize drivetrain performance, ensure compatibility with modified configurations, and meet the unique demands of their specific applications or upgrades.

pto shaft

What Is a Rear Drive Shaft and How Does It Contribute to Vehicle Propulsion?

A rear drive shaft is a component of a vehicle’s drivetrain system that connects the transmission or transfer case to the rear differential. It plays a crucial role in transmitting power from the engine to the rear wheels, contributing to the vehicle’s propulsion. Here’s a detailed explanation of what a rear drive shaft is and how it contributes to vehicle propulsion:

1. Drivetrain Connection:

The rear drive shaft serves as a mechanical link between the transmission or transfer case and the rear differential. It is typically a tubular shaft that rotates at high speeds to transfer torque from the engine to the rear wheels.

When the engine generates power, it is transmitted through the transmission or transfer case, which determines the appropriate gear ratio. The rear drive shaft then transmits this torque to the rear differential, which further distributes power to the rear wheels.

2. Torque Transmission:

The primary function of the rear drive shaft is to transmit torque from the engine to the rear wheels. Torque is the rotational force generated by the engine, and it is essential for propelling the vehicle forward.

As the engine produces torque, it is transferred to the transmission or transfer case. From there, the torque is sent through the rear drive shaft to the rear differential. The rear differential then splits the torque and sends it to the rear wheels, allowing them to rotate and propel the vehicle.

3. Power Distribution:

The rear drive shaft plays a critical role in distributing power evenly between the rear wheels. In vehicles with rear-wheel drive systems, the rear drive shaft ensures that power is distributed to both wheels, enabling balanced propulsion.

By transmitting torque from the engine to the rear differential, the rear drive shaft allows the differential to distribute power to both rear wheels based on traction conditions. This power distribution ensures that both wheels contribute to vehicle propulsion and provides stability and control during acceleration and cornering.

4. Suspension Movement Compensation:

Another important function of the rear drive shaft is to compensate for the movement of the suspension system. The suspension system allows the wheels to move up and down independently to absorb bumps, uneven road surfaces, and other disturbances.

As the suspension moves, the distance between the transmission or transfer case and the rear differential changes. The rear drive shaft accommodates this movement by expanding or contracting its length, allowing the rear wheels to move vertically while maintaining a continuous torque transmission.

5. Drive System Efficiency:

An efficiently operating rear drive shaft contributes to the overall efficiency of the vehicle’s drivetrain system. By effectively transmitting torque from the engine to the rear wheels, it minimizes power losses and ensures optimal power delivery.

Efficiency in power transmission reduces energy waste and maximizes the vehicle’s performance and fuel efficiency. A well-maintained rear drive shaft with proper lubrication and alignment helps minimize friction and mechanical losses, maximizing the effectiveness of the drivetrain system.

6. Four-Wheel Drive Capability:

In vehicles equipped with four-wheel drive systems, the rear drive shaft is a crucial component for engaging the front wheels for propulsion. In these systems, the rear drive shaft transfers torque to the transfer case, which then distributes power to the front and rear differentials.

By transmitting torque to the transfer case, the rear drive shaft enables four-wheel drive capability, allowing the vehicle to engage all four wheels for enhanced traction and off-road performance.

In summary, a rear drive shaft is a key component in a vehicle’s drivetrain system. It serves as a drivetrain connection, transmits torque from the engine to the rear wheels, distributes power between the rear wheels, compensates for suspension movement, enhances drive system efficiency, and facilitates four-wheel drive capability. By fulfilling these functions, the rear drive shaft contributes to the vehicle’s propulsion, stability, and overall performance.

China manufacturer 65-9371 for Chevrolet Silverado 01-06 Rear Prop Drive Shaft Cardan Shaft Manufacture Hot Sell in America Europe Market  China manufacturer 65-9371 for Chevrolet Silverado 01-06 Rear Prop Drive Shaft Cardan Shaft Manufacture Hot Sell in America Europe Market
editor by CX 2023-09-19