China OEM Electric Motor Drive Axle Bus Parts Rear Axle Half Shaft

Product Description

The illustration of Rear Axle

 

Suspension Model

AR115

 

 

Rated load(kg)

115000

Brake Type

Disc/Drum

Rim Distance(mm)

1832

Max out Torque(Nm)

30000

Distribution Circle

10*335

Flange Type

Plain Flange

Ratio

3.15~6.17

Applicable Bus

7m Bus

Wheel Hub Type

Bearing Unit

Weight(oil included)(kg)

690()Drum)/630(Disc)

The Detailed Drawing of Defined Rear Axle

Type: FRONT AXLEAF 2.2~2.7                                                                                                   Type: FRONT AXLE–AF 5.5

Application: 5~7 m Coach/City Bus                                                                                               Application: 10~11 m Coach/City Bus

                                                                  

Type: FRONT AXLE–AF 75                                                                                            Type: REAR AXLE–AR 40

Application: OVER 11 m Coach/City Bus                                                                       Application: 5~8m Coach/City Bus
Economy of The Axle and Suspension

In order to improve the axle and suspension quality, improve customer car experience, reduce after-sales maintenance costs, fully learn from domestic and foreign advanced axle technology, especially in the axle wheel edge unique innovation, from grease lubricated wheel edge, to oil lubricated wheel edge, and then to the maintainance free axle ans suspension wheel edge, compared with the previous generation, there is a qualitative leap. Among them, there are 2 kinds of maintenance-free wheel edge: oil lubrication maintenance-free (generally 500,000 km maintenance-free) and integrated maintenance-free (namely bearing unit, 5 years / 800,000 km maintenance-free).

Company Profile

 DUOYUAN AUTOMOBILE EQUIPMENT CO.LTD

Duoyuan automobile equipment, covers an area of more than 100 acres and has over 300 employees, including more than 90 professionals and technical personnel, more than 10 senior engineers, and more than 30 intermediate engineers.

Our goal is to become the third party professional auto parts supplier with innovative spirit and leading technology. With continuous construction and development for 16 years, we have cooperate with YuTong Group for a term strategy. Current product market volume: Over 400,000 pieces of bus special axles, over 250,000 kits of bus air suspensions; annual production capacity: 100,000 pieces of bus special axle and 50,000 kits of bus air suspensions. In 2018, our sales exceeded RMB 1.5 billion.

At present, our products are mainly bus-oriented, providing matching products to full ranges of models such as passenger bus, tourist bus, group bus, public transportation bus, school buses and new energy bus; Also, we are actively expanding truck and other commercial vehicle markets. Our products are sold to more than 130 countries and regions in the world such as Cuba, Venezuela, Russia, Iran and Saudi Arabia as parts of complete vehicle.

In order to realize a better future, we, by upholding the spirit of exploration, learn widely from others’ strong points and absorb foreign and domestic advanced experience, and strive for the development of China’s automotive equipment.

FAQ

Q:Are you trading company or manufacturer?

A: We are factory who have been specializing in designing and manufacturing axle and suspension for 20 years .
Q:Can your products be customized or modified?

A: We can design and develop the axl and suspension according to customers’ requirements and vehicle parameters .
Q: What is your terms of payment ?
A: 100% Advance payment by T/T after signing the contract.
Q: What is your terms of packing?
A: Generally, we put buggy axle on Wooden pallets,Stretch film fixed in wooden box . Or Customer required.
Q: How long is your delivery time?
A: Generally it is 15-25 days if the goods are in stock. or it is 35-45 days if the goods are not in stock, it is according to
quantity.
Q: What is your axl sample policy?
A: We can supply the buggy axle sample if we have ready parts in stock, but the customers have to pay the sample cost and he courier cost.Please contact with me with buggy axle.
Q. Do you test all your buggy axle before delivery?
A: Yes, we have 100% test before delivery
Q: How do you make our business long-term and good relationship?
A:1. We keep axle and suspension a good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.

After-sales Service: 1 Year
Condition: New
Axle Number: 1
Application: Bus
Certification: ISO
Material: Steel
Customization:
Available

|

Customized Request

pto shaft

How Do Rear Drive Shafts Ensure Efficient Power Transfer While Maintaining Balance?

Rear drive shafts play a crucial role in ensuring efficient power transfer from the engine or transmission to the rear wheels of a vehicle. At the same time, they must maintain balance to prevent vibrations, reduce stress on drivetrain components, and enhance overall performance. Here’s a detailed explanation of how rear drive shafts achieve efficient power transfer while maintaining balance:

1. Balanced Design:

Rear drive shafts are carefully designed and manufactured to achieve balance. Balance refers to the distribution of mass along the length of the drive shaft. Imbalances can lead to vibrations and unwanted forces that affect the smooth operation of the drivetrain. To achieve balance, drive shafts are dynamically balanced during the manufacturing process. This involves adding weights or removing material at specific locations to counteract any uneven distribution of mass. By achieving balance, the drive shaft can rotate smoothly at high speeds, minimizing vibrations and ensuring efficient power transfer.

2. Proper Length and Diameter:

The length and diameter of the rear drive shaft are important considerations for maintaining balance. A drive shaft that is too long or too short can result in excessive deflection or bending, leading to vibrations and potential failure. Similarly, an incorrect diameter can affect the stiffness and torsional strength of the drive shaft, resulting in imbalances. Manufacturers carefully calculate the optimal length and diameter of the drive shaft based on the vehicle’s specifications and requirements to ensure proper balance and power transfer.

3. High-Quality Materials:

The selection of high-quality materials is crucial for maintaining balance in rear drive shafts. Drive shafts are typically made from materials such as steel or aluminum. These materials offer the necessary strength and rigidity while being lightweight. The use of high-quality materials ensures that the drive shaft can withstand the torque and rotational forces without excessive flexing or bending, which can lead to imbalances. Additionally, the materials are chosen for their ability to resist fatigue and vibration, further contributing to balanced operation.

4. Precision Manufacturing:

Rear drive shafts are manufactured with precision to maintain balance. Advanced manufacturing techniques, such as computer-aided design (CAD) and computer numerical control (CNC) machining, are employed to ensure the drive shaft’s dimensional accuracy and balance. The manufacturing process involves precise machining of the shaft, including the yokes, flanges, and other components, to achieve tight tolerances and minimize any deviations that could affect balance. Strict quality control measures are implemented to verify the balance of each drive shaft before it is installed in a vehicle.

5. Vibration Dampening Techniques:

Rear drive shafts often incorporate vibration dampening techniques to further enhance balance and reduce unwanted vibrations. These techniques may include the use of balancing weights, dampers, or vibration-absorbing materials. Balancing weights can be strategically placed along the drive shaft to counteract any remaining imbalances. Dampers, such as rubber or elastomer components, are employed to absorb and dissipate vibrations, preventing them from propagating throughout the drivetrain. By minimizing vibrations, these techniques help maintain overall balance and contribute to efficient power transfer.

6. Universal Joints or Constant Velocity Joints:

Rear drive shafts incorporate flexible joints, such as universal joints (u-joints) or constant velocity (CV) joints, to accommodate changes in angles and maintain balance. These joints allow for angular movement and compensate for variations in the alignment between the transmission or transfer case and the rear differential. By allowing the drive shaft to flex and articulate, these joints help prevent binding, minimize stress on the drivetrain components, and maintain balance throughout the range of motion.

7. Regular Maintenance and Inspection:

Maintaining balance in rear drive shafts requires regular maintenance and inspection. Over time, components may wear or become damaged, leading to imbalances. It is important to periodically inspect the drive shaft for signs of wear, such as worn u-joints or damaged CV joints. Additionally, proper lubrication of the joints and ensuring the drive shaft is properly installed and aligned are essential for maintaining balance. Routine maintenance and inspections help detect and address any issues that could affect the drive shaft’s balance and overall performance.

In summary, rear drive shafts ensure efficient power transfer while maintaining balance through a combination of balanced design, proper length and diameter, high-quality materials, precision manufacturing, vibration dampening techniques, flexible joints, and regular maintenance. By achieving and maintaining balance, rear drive shafts contribute to smooth operation, minimize vibrations, and enhance the overall performance and longevity of the drivetrain system.

pto shaft

Can Rear Drive Shafts Be Customized for Specific Vehicle Configurations or Upgrades?

Rear drive shafts can indeed be customized to accommodate specific vehicle configurations or upgrades. Customization allows for optimal fitment, performance, and compatibility with modified drivetrain systems or unique vehicle configurations. Here’s a detailed explanation of how rear drive shafts can be customized for specific vehicle configurations or upgrades:

1. Length and Diameter:

Custom rear drive shafts can be manufactured with specific lengths and diameters to suit different vehicle configurations. When modifying a vehicle’s drivetrain, such as installing a lift kit, altering suspension components, or changing the transmission or differential, the drive shaft’s length and diameter may need to be adjusted accordingly. Modifying these dimensions ensures proper alignment and engagement with the transmission output shaft and differential input flange, allowing for smooth and efficient power transfer.

2. Material Selection:

Custom rear drive shafts can be crafted from different materials depending on the specific vehicle requirements or upgrades. While steel is commonly used for its strength and durability, alternative materials like aluminum or carbon fiber can be chosen to reduce weight and improve overall vehicle performance. The choice of material will depend on factors such as the vehicle’s weight, power output, intended use, and budget considerations.

3. U-Joints and CV Joints:

U-joints and CV joints are critical components of rear drive shafts, allowing for flex and rotational movement while transmitting torque. When customizing a rear drive shaft, the type and size of U-joints or CV joints can be selected based on the specific vehicle configuration or upgrade. Heavy-duty or high-performance U-joints or CV joints may be chosen to handle increased power, torque, or off-road demands. Upgraded joints can provide improved strength, reliability, and articulation angles, ensuring optimal performance in modified drivetrain setups.

4. Balancing and Harmonics:

Custom rear drive shafts can be carefully balanced to minimize vibrations and harmonics. Balancing is crucial to ensure smooth operation and prevent excessive wear on drivetrain components. When modifying or upgrading the vehicle’s drivetrain, changes in weight distribution, rotational speeds, or component stiffness can affect the dynamic balance of the drive shaft. Custom balancing techniques, such as precision weights or dynamic balancing machines, can be employed to achieve optimal balance and reduce vibrations, ensuring a comfortable and reliable driving experience.

5. Performance Enhancements:

Custom rear drive shafts can be tailored to enhance performance in specific vehicle configurations or upgrades. For example, in high-performance applications or off-road vehicles, reinforced drive shafts with thicker walls or additional gussets can be fabricated to handle increased power and torque loads. Upgraded materials, such as heat-treated alloys, can be utilized to improve strength and durability. By customizing the rear drive shaft, vehicle owners can ensure that the drivetrain system can effectively handle the demands of their specific applications.

6. Compatibility with Differential Ratios:

When changing the differential gear ratios in a vehicle, the rear drive shaft’s rotational speed and torque requirements may be affected. Custom rear drive shafts can be designed to accommodate these changes in gear ratios, ensuring proper torque transmission and maintaining compatibility between the transmission, transfer case (if applicable), and the differential. This customization helps maintain optimal drivetrain performance and prevents potential driveline vibrations or failures that may arise from mismatched gear ratios.

7. Professional Consultation and Expertise:

Customizing rear drive shafts for specific vehicle configurations or upgrades often requires professional consultation and expertise. Working with experienced drivetrain specialists, automotive engineers, or aftermarket manufacturers can help ensure that the customization aligns with the vehicle’s requirements and performance goals. These experts can provide valuable insights and recommendations, taking into account factors such as vehicle weight, powertrain modifications, intended use, and budget constraints.

In summary, rear drive shafts can be customized to suit specific vehicle configurations or upgrades. Customization options include adjusting the length and diameter, selecting appropriate materials, choosing the right type and size of U-joints or CV joints, balancing the drive shaft, incorporating performance enhancements, ensuring compatibility with differential ratios, and seeking professional consultation and expertise. By customizing rear drive shafts, vehicle owners can optimize drivetrain performance, ensure compatibility with modified configurations, and meet the unique demands of their specific applications or upgrades.

pto shaft

What Is a Rear Drive Shaft and How Does It Contribute to Vehicle Propulsion?

A rear drive shaft is a component of a vehicle’s drivetrain system that connects the transmission or transfer case to the rear differential. It plays a crucial role in transmitting power from the engine to the rear wheels, contributing to the vehicle’s propulsion. Here’s a detailed explanation of what a rear drive shaft is and how it contributes to vehicle propulsion:

1. Drivetrain Connection:

The rear drive shaft serves as a mechanical link between the transmission or transfer case and the rear differential. It is typically a tubular shaft that rotates at high speeds to transfer torque from the engine to the rear wheels.

When the engine generates power, it is transmitted through the transmission or transfer case, which determines the appropriate gear ratio. The rear drive shaft then transmits this torque to the rear differential, which further distributes power to the rear wheels.

2. Torque Transmission:

The primary function of the rear drive shaft is to transmit torque from the engine to the rear wheels. Torque is the rotational force generated by the engine, and it is essential for propelling the vehicle forward.

As the engine produces torque, it is transferred to the transmission or transfer case. From there, the torque is sent through the rear drive shaft to the rear differential. The rear differential then splits the torque and sends it to the rear wheels, allowing them to rotate and propel the vehicle.

3. Power Distribution:

The rear drive shaft plays a critical role in distributing power evenly between the rear wheels. In vehicles with rear-wheel drive systems, the rear drive shaft ensures that power is distributed to both wheels, enabling balanced propulsion.

By transmitting torque from the engine to the rear differential, the rear drive shaft allows the differential to distribute power to both rear wheels based on traction conditions. This power distribution ensures that both wheels contribute to vehicle propulsion and provides stability and control during acceleration and cornering.

4. Suspension Movement Compensation:

Another important function of the rear drive shaft is to compensate for the movement of the suspension system. The suspension system allows the wheels to move up and down independently to absorb bumps, uneven road surfaces, and other disturbances.

As the suspension moves, the distance between the transmission or transfer case and the rear differential changes. The rear drive shaft accommodates this movement by expanding or contracting its length, allowing the rear wheels to move vertically while maintaining a continuous torque transmission.

5. Drive System Efficiency:

An efficiently operating rear drive shaft contributes to the overall efficiency of the vehicle’s drivetrain system. By effectively transmitting torque from the engine to the rear wheels, it minimizes power losses and ensures optimal power delivery.

Efficiency in power transmission reduces energy waste and maximizes the vehicle’s performance and fuel efficiency. A well-maintained rear drive shaft with proper lubrication and alignment helps minimize friction and mechanical losses, maximizing the effectiveness of the drivetrain system.

6. Four-Wheel Drive Capability:

In vehicles equipped with four-wheel drive systems, the rear drive shaft is a crucial component for engaging the front wheels for propulsion. In these systems, the rear drive shaft transfers torque to the transfer case, which then distributes power to the front and rear differentials.

By transmitting torque to the transfer case, the rear drive shaft enables four-wheel drive capability, allowing the vehicle to engage all four wheels for enhanced traction and off-road performance.

In summary, a rear drive shaft is a key component in a vehicle’s drivetrain system. It serves as a drivetrain connection, transmits torque from the engine to the rear wheels, distributes power between the rear wheels, compensates for suspension movement, enhances drive system efficiency, and facilitates four-wheel drive capability. By fulfilling these functions, the rear drive shaft contributes to the vehicle’s propulsion, stability, and overall performance.

China OEM Electric Motor Drive Axle Bus Parts Rear Axle Half Shaft  China OEM Electric Motor Drive Axle Bus Parts Rear Axle Half Shaft
editor by CX 2023-09-13