China Standard Gjf Rear CV Axle Drive Shaft for CZPT Tucson C-Hy096A-8h

Product Description

 

Product Description

1.We are manufacturer of cv drive shaft,cv  axle, cv joint and cv boot, we have more than 20-years experience in producing and selling auto parts.
2.We have strict quality control, the quality of our products is very good.
3.We are professional in different market around the world.
4.The reviews our customers given us are very positive, we have confidence in our products.
5.OEM/ODM is available, meet your requirements well.
6.Large warehouse, huge stocks!!! friendly for those customers who want some quantity.
7.Ship products out very fastly, we have stock.

Product Name  Drive shaft Material  42CrMo alloy steel
Car fitment  Hyundai Warranty  12 months 
Model  Tucson 1.6T AT Rear 4WD/R 2015- Place of origin  ZHangZhoug, China
Certification  SGS/TUV/ISO MOQ 4 PCS
Transportation  Express/ by sea/ by air/ by land  Delivery time  1-7 days 
OEM/ODM Yes Brand  GJF
Advantages  large stocks/ deliver fastly/ strict quality supervision Payment  L/C,T/T,western Union,Cash,PayPal 
Sample service  Depends on the situation of stock  Weight  About 9KG

Detailed Photos

 

Customer Review

 

Packaging & Shipping

 

 

FAQ

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Months
Condition: New
Axle Number: 1
Application: Car
Certification: ASTM, CE, DIN, ISO
Material: Alloy
Samples:
US$ 42.86/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What Maintenance Practices Are Essential for Prolonging the Lifespan of Rear Drive Shafts?

Maintaining rear drive shafts is essential for ensuring their longevity and optimal performance. By following proper maintenance practices, you can prolong the lifespan of rear drive shafts and prevent premature failures. Here are the key maintenance practices that are essential for maximizing the lifespan of rear drive shafts:

1. Regular Inspection:

Performing regular inspections is crucial for identifying any early signs of wear, damage, or misalignment in the rear drive shaft. Inspect the drive shaft for any visible cracks, dents, or corrosion. Pay attention to the condition of the universal joints (u-joints) or constant velocity (CV) joints, as they are prone to wear. Look for excessive play or looseness in the joints, and check for leaks or torn boots that could allow dirt and moisture to enter. Regular inspections help catch potential issues before they escalate and cause significant damage to the drive shaft.

2. Lubrication:

Proper lubrication of the drive shaft’s u-joints or CV joints is critical for reducing friction, preventing wear, and maintaining smooth operation. Consult the manufacturer’s guidelines to determine the recommended lubricant and interval for greasing the joints. Use high-quality lubricants that are compatible with the specific joint type and follow the correct greasing procedure. Insufficient lubrication can lead to accelerated wear and premature failure of the drive shaft. Regularly inspect the joints’ condition during the greasing process to ensure they are adequately lubricated and in good working order.

3. Balancing and Alignment:

Keep the rear drive shaft properly balanced and aligned to prevent vibrations and excessive stress on the drivetrain components. If you notice vibrations, especially at higher speeds, have the drive shaft’s balance checked by a professional. Imbalances can occur due to the accumulation of dirt or debris, damaged balancing weights, or wear on the drive shaft. Similarly, if you experience driveline vibrations or notice uneven tire wear, it may indicate misalignment. Have the drive shaft alignment checked and adjusted as necessary. Proper balancing and alignment contribute to a smoother and more reliable operation, minimizing wear on the drive shaft.

4. Protection from Moisture and Contaminants:

Rear drive shafts are susceptible to moisture, dirt, and other contaminants that can lead to corrosion, accelerated wear, and joint failure. Avoid driving through deep water or muddy conditions that can submerge or coat the drive shaft with corrosive substances. If the drive shaft becomes wet or dirty, clean it promptly using a gentle stream of water and mild soap, and ensure it is thoroughly dried. Applying a protective coating or lubricant to exposed surfaces can help prevent corrosion. Additionally, inspect and replace damaged or torn joint boots to prevent dirt and moisture from entering and causing damage.

5. Proper Torque and Fastener Inspection:

Ensure that all fasteners, such as bolts and nuts, are tightened to the manufacturer’s specified torque values. Loose or improperly tightened fasteners can lead to vibrations, misalignment, and damage to the drive shaft. Regularly inspect the fasteners for any signs of loosening or damage and tighten them as necessary. During maintenance or repairs that involve removing the drive shaft, ensure that the fasteners are properly reinstalled and torqued to the recommended specifications. Following the correct torque values and fastener inspection practices helps maintain the integrity and safety of the rear drive shaft.

6. Professional Maintenance and Repairs:

While some maintenance tasks can be performed by vehicle owners, certain maintenance and repair procedures are best left to professionals with specialized knowledge and equipment. If you encounter significant issues, such as severe wear, damaged joints, or suspected balance or alignment problems, it is advisable to consult a qualified mechanic or drivetrain specialist. They can conduct thorough inspections, provide accurate diagnoses, and perform the necessary repairs or replacements to ensure the rear drive shaft’s longevity and proper functioning.

7. Follow Manufacturer Guidelines:

Always refer to the vehicle manufacturer’s guidelines and recommendations for maintenance practices specific to your vehicle’s rear drive shaft. Manufacturers provide valuable information regarding maintenance intervals, lubrication requirements, inspection procedures, and other important considerations. Adhering to these guidelines ensures that you follow the best practices and requirements specified for your particular drive shaft model, contributing to its prolonged lifespan.

In summary, regular inspection, proper lubrication, balancing and alignment, protection from moisture and contaminants, proper torque and fastener inspection, professional maintenance and repairs when necessary, and following manufacturer guidelines are essential maintenance practices for prolonging the lifespan of rear drive shafts. By implementing these practices, you can enhance the reliability, durability, and performanceof the rear drive shaft, ultimately extending its lifespan and reducing the risk of unexpected failures or costly repairs.

pto shaft

How Do Rear Drive Shafts Enhance the Traction and Stability of Off-Road Vehicles?

Rear drive shafts play a crucial role in enhancing the traction and stability of off-road vehicles. Off-road driving presents unique challenges, such as uneven terrain, steep inclines, loose surfaces, and obstacles, where maintaining traction and stability is vital. Here’s a detailed explanation of how rear drive shafts contribute to enhancing the traction and stability of off-road vehicles:

1. Power Distribution:

Rear drive shafts are responsible for transmitting torque from the transfer case or transmission to the rear differential or rear axle in off-road vehicles. This power distribution allows the rear wheels to receive torque and apply it to the ground, enhancing traction. By providing power to the rear wheels, the rear drive shafts ensure that the wheels dig into the terrain, maximizing grip and reducing the chances of wheel spin. This power distribution contributes to maintaining forward momentum and preventing loss of traction in challenging off-road conditions.

2. Rear-Wheel Traction:

Rear drive shafts enable rear-wheel traction, which is crucial for off-road vehicles. When traversing uneven or slippery terrain, the weight of the vehicle shifts to the rear wheels during acceleration. The rear drive shafts deliver torque to the rear wheels, allowing them to maintain traction and effectively propel the vehicle forward. By ensuring rear-wheel traction, the drive shafts help the off-road vehicle overcome obstacles, climb steep inclines, and navigate challenging off-road terrains where maintaining grip is essential.

3. Weight Transfer:

Rear drive shafts contribute to proper weight transfer during off-road driving. As the vehicle encounters obstacles or uneven terrain, weight transfer occurs, with the weight shifting from one wheel to another. The rear drive shafts aid in balancing the weight distribution, preventing excessive weight transfer to a single wheel. This balanced weight transfer improves stability and minimizes the chances of wheel lift or loss of control. It allows the off-road vehicle to maintain stability and traction, enhancing overall safety and performance.

4. Axle Articulation:

Off-road vehicles often require significant axle articulation to maintain contact between the wheels and the ground, especially when navigating rough terrain. Rear drive shafts accommodate the movement and flexing of the suspension system, allowing the rear wheels to articulate independently. This flexibility enables the wheels to maintain contact with the ground, even when encountering large obstacles or uneven surfaces. By adapting to the changing terrain, the rear drive shafts contribute to improved traction and stability, ensuring the off-road vehicle can maintain forward momentum.

5. Torque Control:

Rear drive shafts play a role in torque control, which is essential for maintaining traction and stability off-road. Some off-road vehicles feature differential locks or limited-slip differentials in the rear axle. The rear drive shafts transmit torque to these differentials, allowing for better power distribution between the rear wheels. This torque control helps prevent wheelspin and ensures that power is delivered to the wheels with traction, enhancing overall traction and stability in challenging off-road conditions.

6. Ground Clearance:

Rear drive shafts contribute to improving ground clearance in off-road vehicles. The design and positioning of the drive shafts allow for higher ground clearance compared to vehicles with front-wheel drive configurations. Increased ground clearance reduces the risk of the drive shafts scraping or getting damaged by obstacles, rocks, or uneven surfaces. By providing adequate ground clearance, the rear drive shafts enable the off-road vehicle to navigate rough terrain without hindrance, maintaining traction and stability.

7. Durability and Reliability:

Rear drive shafts in off-road vehicles are designed to withstand the demanding conditions encountered during off-road driving. They are built to be robust and durable, capable of withstanding impacts, vibrations, and extreme articulation. The reliability and strength of the rear drive shafts contribute to maintaining traction and stability by ensuring that the power transmission remains intact, even in challenging off-road situations.

In summary, rear drive shafts enhance the traction and stability of off-road vehicles through power distribution, rear-wheel traction, weight transfer management, axle articulation accommodation, torque control, increased ground clearance, and durability. These factors collectively contribute to maintaining traction, allowing the off-road vehicle to overcome obstacles, navigate challenging terrains, and ensure stability and control in off-road driving conditions.

pto shaft

Which Types of Vehicles Commonly Use Rear Drive Shafts in Their Drivetrain?

Rear drive shafts are a common feature in several types of vehicles, particularly those that utilize rear-wheel drive (RWD) or four-wheel drive (4WD) drivetrain configurations. These vehicles rely on rear drive shafts to transmit power from the engine or transmission to the rear wheels. Here’s a detailed explanation of the types of vehicles that commonly use rear drive shafts in their drivetrain:

1. Rear-Wheel Drive (RWD) Vehicles:

Rear drive shafts are most commonly found in RWD vehicles. In RWD configurations, the engine’s power is sent to the rear wheels through the transmission and rear differential. The rear drive shaft connects the output of the transmission or transfer case to the input of the rear differential, allowing power transmission to the rear wheels. This setup is commonly used in sports cars, luxury sedans, pickup trucks, and some SUVs.

2. Four-Wheel Drive (4WD) and All-Wheel Drive (AWD) Vehicles:

Many 4WD and AWD vehicles also utilize rear drive shafts as part of their drivetrain systems. These vehicles provide power to all four wheels, enhancing traction and off-road capability. In 4WD systems, the rear drive shaft transfers power from the transfer case to the rear differential and front differential, enabling torque distribution to both the front and rear wheels. This setup is commonly found in off-road vehicles, SUVs, trucks, and some performance cars.

3. Trucks and Commercial Vehicles:

Rear drive shafts are essential components in trucks and commercial vehicles. These vehicles often have rear-wheel drive or part-time 4WD systems to handle heavy loads, towing, and demanding work conditions. The rear drive shafts in trucks and commercial vehicles are designed to endure higher torque and load capacities, ensuring reliable power transmission to the rear wheels.

4. SUVs and Crossovers:

Many SUVs and crossovers employ rear drive shafts, especially those with RWD or 4WD/AWD configurations. These vehicles often prioritize versatility, off-road capability, and towing capacity. Rear drive shafts enable power transmission to the rear wheels, enhancing traction and stability both on and off the road. SUVs and crossovers with 4WD or AWD systems can distribute torque to all four wheels, improving performance in various weather and terrain conditions.

5. Performance and Sports Cars:

Performance and sports cars frequently utilize rear drive shafts as part of their drivetrain systems. RWD configurations are common in these vehicles, as they offer better weight distribution, improved handling, and enhanced control during high-performance driving. Rear drive shafts enable efficient power delivery to the rear wheels, contributing to the vehicle’s acceleration, stability, and overall performance.

6. Muscle Cars and Classic Vehicles:

Muscle cars and classic vehicles often feature rear drive shafts due to their traditional RWD setups. These vehicles evoke a nostalgic driving experience and typically prioritize power and rear-wheel traction. Rear drive shafts play a crucial role in transmitting power and torque from the engine to the rear wheels, allowing muscle cars and classic vehicles to deliver the desired performance and driving dynamics.

In summary, rear drive shafts are commonly found in various types of vehicles, including RWD vehicles, 4WD/AWD vehicles, trucks, SUVs, crossovers, performance cars, muscle cars, and classic vehicles. These vehicles rely on rear drive shafts to transmit power from the engine or transmission to the rear wheels, ensuring efficient power delivery, traction, and drivetrain performance.

China Standard Gjf Rear CV Axle Drive Shaft for CZPT Tucson C-Hy096A-8h  China Standard Gjf Rear CV Axle Drive Shaft for CZPT Tucson C-Hy096A-8h
editor by CX 2024-04-23