China wholesaler Alloy Steel Forging Drive Shaft Yoke for Farm Tractor

Product Description

  

Product Description:

Product Name:Alloy Steel Forging Drive Shaft Yoke for Farm Tractor

Material: 40CrMo

Weight: From 0.2kg-5kg

Packing: Wooden case

Minimum Order: 1000pcs

Customization: Available based on your drawings or sample

Company Name: HiHangZhou Precision Forging Technology Co., Ltd

 

 

Process Die Forging
Material Stainless Steel, Carbon Steel, Alloy Steel 
Weight 0.1Kg~20Kg
Heat Treatment Quenching, Annealing,Tempering,Normalizing, Quenching and Tempering
Testing instrument  composition testing Spectrometer, Metallographic microscope
Performance testing Hardness tester, Tensile testing machine
Size Measuring  CMM,Micrometer, Vernier Caliper, Depth Caliper, feeler gauge
Thread Gauge , Height Gauge
Roughness Ra1.6~Ra6.3
Machining Equipment CNC Center , CNC Machines, Turning, Drilling, Milling, boring machine,Grinding Machines,
Wire EDM,Laser Cutting&Welding, Plasma Cutting &Welding, EDM etc.
Quality control Sampling inspection of raw materials and semi-finished products, 100% Inspection of finished products  
Surface Treatment Shot Blast ,  Powder Coating, Polishing, Galvanized , Chrome Plated   
Production Capacity 60000T / Years
Lead Time Normally 30 – 45 Days.
Payment Terms T/T , L/C 
Material Standard ASTM , AISI , DIN , BS, JIS, GB,
Certification ISO9001:2008, IATF16949:2016

Products Quality Control

Quality control at HiHangZhou Precision Forging Technology Co., Ltd. involves meticulous inspection and control of incoming materials, production processes, and finished products.

The quality control process includes:

  1. Analysis of incoming raw materials using a metallographic microscope to ensure the chemical composition meets production requirements.
  2. Timely sampling during production to ensure defect-free products and address any quality issues promptly.
  3. Utilization of a magnetic particle flaw detector to detect hidden cracks or defects in metal parts.
  4. Sampling of finished metal parts for mechanical performance tests, size measurement, and 100% manual surface quality inspection in the laboratory.

See below for pictures of the relevant testing equipment.

 

Certification

Quality Management System Control

At HiHangZhou Precision Forging Technology Co., Ltd., we adhere to strict system management in accordance with ISO9001 and TS16949 quality standards. Our production site follows the 5S lean production management approach to ensure efficiency and quality.

Production Management Site:

Our production management site is equipped with the latest technology and processes to meet the highest quality standards set by ISO9001 and TS16949. The implementation of 5S lean production management ensures that our products are manufactured with precision and efficiency.

 

Our Advantages:

Brand

As a subsidiary of the renowned HiHangZhou Group, we have a strong reputation for high-end machinery manufacturing with extensive experience in collaborating with global enterprises.

Technology

With over 25 years of expertise in forging and casting equipment production, our team of technicians and R&D personnel ensures the highest quality and efficiency in our manufacturing processes.

Service

We offer custom and standard manufacturing services, guaranteeing top-notch product quality and timely delivery through effective communication.

Culture

Our unique corporate culture fosters individual potential and sustains the company’s development with vigor.

Social Responsibility

Committed to low-carbon environmental practices, energy conservation, and emission reduction, we are a leading benchmark enterprise in our local region.

Company Culture

Our Vision

To become 1 of the leading companies.

Our Mission

To become a platform for employees to realize their dreams.

To become a transforming and upgrading pacemaker of Chinese enterprises.

To set national brands with pride.

Our Belief

Strive to build the company into an ideal platform for entrepreneurs to realize their self-worth and contribute to society.

Values

Improvement is innovation, everyone can innovate.

Innovation inspired and failures tolerated.

 

Frequently Asked Questions

  1. Q: Are you a trading company or a manufacturer?
    A: We are a manufacturer specializing in forging products, casting products, and machining capabilities.
  2. Q: What series products do you offer?
    A: We focus on forming processing of ferrous metals through casting, forging, and machining for various industries.
  3. Q: Do you provide samples? Is it free?
    A: Yes, we provide samples with customers covering freight costs to show mutual cooperation.
  4. Q: Is OEM available?
    A: Yes, we offer OEM services.
  5. Q: What’s your quality guarantee?
    A: We prioritize continuous product quality improvement, backed by strict control measures and certifications like ISO/TS16949 and SGS.
  6. Q: How about the Packing?
    A: We typically use iron boxes or wooden cases, customizable based on customer preferences.
  7. Q: What is your minimum order quantity?
    A: Minimum order quantity varies based on product features like material, weight, and construction.
  8. Q: What is the lead time?
    A: Lead time for new dies or molds and production ranges from 30-45 days, depending on complexity and quantity.
  9. Q: What payment methods do you accept?
    A: Payments can be made via T/T or L/C with a 30% deposit and 70% balance against the copy of B/L.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Processing Object: Metal
Molding Style: Forging
Molding Technics: Pressure Casting
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

Are There Any Signs of Wear or Damage That Indicate a Need for Rear Drive Shaft Replacement?

Over time, rear drive shafts can experience wear and damage due to various factors such as usage, environmental conditions, and maintenance practices. Recognizing the signs of wear or damage is crucial as it helps determine whether a rear drive shaft replacement is necessary. Here are some detailed explanations of the signs that indicate a need for rear drive shaft replacement:

1. Vibrations and Shaking:

If you notice excessive vibrations or shaking coming from underneath the vehicle, it can be a sign of an unbalanced or worn-out rear drive shaft. Imbalances can occur due to damaged or worn-out universal joints (U-joints) or constant velocity (CV) joints. As the drive shaft rotates, these imbalances can cause vibrations to transfer to the vehicle’s body, resulting in noticeable shaking or tremors. If the vibrations persist even after balancing the tires and inspecting other drivetrain components, it may indicate that the rear drive shaft needs replacement.

2. Clunking or Knocking Noises:

Unusual clunking or knocking noises while accelerating, decelerating, or shifting gears could be indicative of a damaged or worn-out rear drive shaft. These noises may suggest issues with the U-joints, CV joints, or slip yoke. Worn-out U-joints can cause a clunking sound when there is excessive play or movement in the joint. Similarly, worn-out CV joints or slip yokes can generate knocking noises as they fail to maintain proper engagement and alignment. If you hear persistent clunking or knocking noises, it is advisable to have the rear drive shaft inspected and replaced if necessary.

3. Excessive Vibration During Acceleration:

If you experience strong vibrations specifically during acceleration, it could indicate an issue with the rear drive shaft. Worn-out U-joints or CV joints can cause the drive shaft to lose its balance, resulting in vibrations during acceleration. These vibrations may intensify as the vehicle’s speed increases. It is important to address this issue promptly, as continued use of a damaged rear drive shaft can lead to further damage to other drivetrain components.

4. Grease Leakage:

Grease leakage around the U-joints or CV joints of the rear drive shaft can be a sign of wear or damage. U-joints and CV joints are typically equipped with grease fittings to ensure proper lubrication. If the joints are damaged or worn, they may develop cracks or gaps that allow grease to escape. Grease leakage can lead to insufficient lubrication, accelerated wear, and eventual failure of the joints. If you notice signs of grease leakage around the rear drive shaft joints, it is recommended to have them inspected and replace the drive shaft if necessary.

5. Visible Cracks, Bends, or Dents:

Inspecting the physical condition of the rear drive shaft can reveal signs of wear or damage. Visual cues such as cracks, bends, or dents on the drive shaft indicate structural weakness and compromise its performance. These damages can occur due to impacts from road debris, rough driving conditions, or excessive torque loads. If any visible damage is present on the rear drive shaft, it is advisable to have it assessed by a qualified technician. Depending on the severity of the damage, the drive shaft may need to be replaced.

6. Excessive Play or Movement:

Excessive play or movement in the rear drive shaft is a clear indication of wear or damage. You can check for play by firmly gripping the drive shaft near the U-joints or CV joints and attempting to move it back and forth or rotate it. If there is noticeable play or excessive movement, it suggests that the joints are worn-out, the splines are damaged, or the slip yoke is loose. Excessive play can affect the drivetrain’s operation and lead to further damage if not addressed promptly. In such cases, a rear drive shaft replacement may be necessary.

7. Maintenance History and Mileage:

Consider the maintenance history and mileage of the vehicle when evaluating the need for rear drive shaft replacement. Rear drive shafts, like other components, have a finite lifespan and may require replacement after a certain mileage or duration of use. If the vehicle has reached a high mileage, or if there is a lack of maintenance records indicating regular inspection and lubrication of the drive shaft, it is advisable to have it assessed for wear or damage.

In summary, signs of wear or damage that indicate a need for rear drive shaft replacement include excessive vibrations and shaking, clunking or knocking noises, excessive vibration during acceleration, grease leakage, visible cracks, bends, or dents, and excessive play or movement in the drive shaft. Additionally, considering the maintenance history and mileage of the vehicle can provide valuable insights into the potential need for rear drive shaft replacement. If any of these signs are observed, it is recommended to have the rear drive shaft inspected by a qualified technician to determine the appropriate course of action, which may include replacement to ensure the safe and reliable operation of the vehicle’s drivetrain system.pto shaft

How Do Rear Drive Shafts Ensure Smooth Power Delivery and Minimize Vibration in Vehicles?

Rear drive shafts play a critical role in ensuring smooth power delivery and minimizing vibration in vehicles. They are designed to transmit torque from the transmission or transfer case to the rear differential or axle, allowing the wheels to propel the vehicle forward. Here’s a detailed explanation of how rear drive shafts achieve smooth power delivery and minimize vibration:

1. Balanced Design:

Rear drive shafts are carefully engineered to achieve a balanced design. This involves taking into consideration factors such as length, diameter, material properties, and weight distribution. By achieving balance, the drive shaft minimizes the occurrence of vibrations that can result from uneven weight distribution or misalignment. Balanced drive shafts reduce the chances of vibration-induced discomfort, noise, and potential damage to other drivetrain components.

2. Precision Manufacturing:

The manufacturing process of rear drive shafts involves precision techniques to ensure the highest level of accuracy and quality. Computer numerical control (CNC) machining and advanced welding methods are employed to create drive shafts with precise dimensions and alignment. This precision manufacturing helps to reduce any imperfections or inconsistencies that could contribute to vibration. By producing drive shafts with tight tolerances, manufacturers strive to achieve smooth power delivery and minimize vibration.

3. High-Quality Materials:

The choice of materials for rear drive shafts greatly influences their ability to ensure smooth power delivery and minimize vibration. Drive shafts are commonly made from materials such as steel, aluminum, or composite materials. These materials are selected for their strength, durability, and vibration-damping properties. High-quality materials with excellent torsional rigidity and appropriate damping characteristics help absorb and dissipate vibrations, resulting in smoother power delivery and a reduction in unwanted vibrations.

4. Dampening Techniques:

Vibration dampening techniques are employed in rear drive shafts to further minimize vibrations. These techniques include the use of rubber or polyurethane bushings and isolators at the connection points between the drive shaft and other components, such as the transmission, transfer case, and differential. These bushings act as vibration absorbers, reducing the transfer of vibrations from the drive shaft to the rest of the vehicle’s drivetrain. By effectively isolating vibrations, rear drive shafts contribute to a smoother power delivery and a more comfortable driving experience.

5. Drive Shaft Angles:

The angles at which the rear drive shaft operates can impact power delivery and vibration. Rear drive shafts are designed with proper operating angles to minimize vibration. These angles, known as the driveshaft angles or u-joint angles, are carefully calculated to ensure optimal alignment and reduce vibration-causing forces. Improperly aligned drive shaft angles can result in driveline vibrations, so proper alignment is crucial for smooth power delivery and minimal vibration.

6. Dynamic Balancing:

During the manufacturing process, rear drive shafts undergo dynamic balancing. Dynamic balancing involves spinning the drive shaft and adding small counterweights to eliminate any imbalances. This process ensures that the drive shaft is evenly weighted and free from vibration-causing irregularities. Dynamic balancing helps achieve smooth power delivery and minimizes vibration by eliminating the effects of imbalance that can arise from manufacturing tolerances or material variations.

7. Regular Maintenance:

Regular maintenance and inspection of rear drive shafts are essential to ensure their optimal performance and minimize vibration. This includes checking for signs of wear, damage, or misalignment. Proper lubrication of universal joints and ensuring the integrity of the drive shaft’s components are also important maintenance tasks. By keeping rear drive shafts in good condition, potential sources of vibration can be identified and addressed promptly, contributing to smooth power delivery and minimizing vibration.

In summary, rear drive shafts achieve smooth power delivery and minimize vibration through balanced design, precision manufacturing, high-quality materials, dampening techniques, proper drive shaft angles, dynamic balancing, and regular maintenance. These measures collectively contribute to a comfortable and efficient driving experience while reducing the risk of drivetrain-related vibration and potential damage to the vehicle.

pto shaft

Can You Explain the Role of a Rear Drive Shaft in Power Distribution to the Wheels?

A rear drive shaft plays a crucial role in power distribution to the wheels of a vehicle. It is responsible for transmitting torque from the engine or transmission to the rear wheels, enabling propulsion and controlling the distribution of power. Here’s a detailed explanation of the role of a rear drive shaft in power distribution to the wheels:

1. Torque Transmission:

One of the primary functions of a rear drive shaft is to transmit torque from the engine or transmission to the rear wheels of a vehicle. Torque is the rotational force generated by the engine, and it is essential for powering the wheels and enabling vehicle movement.

As the engine or transmission produces torque, it is transferred through the drivetrain system, which includes the rear drive shaft. The rear drive shaft serves as a mechanical link, transmitting the torque from the engine or transmission to the rear differential.

2. Rear Differential:

The rear differential is a component that sits between the rear drive shaft and the rear wheels. Its primary function is to distribute torque received from the rear drive shaft to the individual rear wheels.

When torque is transmitted through the rear drive shaft, it reaches the rear differential. The rear differential then splits the torque into two outputs, one for each rear wheel. This distribution of torque allows the wheels to rotate at different speeds when turning, ensuring smooth and controlled vehicle maneuverability.

3. Power Distribution:

A rear drive shaft plays a critical role in power distribution between the rear wheels. By transmitting torque to the rear differential, it enables the differential to distribute power to each wheel based on traction conditions and driving demands.

When a vehicle is in motion, the rear wheels may encounter different road conditions or have varying levels of traction. The rear differential, controlled by the rear drive shaft, ensures that power is distributed to the wheels with better traction, enhancing overall vehicle stability and control.

4. Drive System Configuration:

The presence of a rear drive shaft is often associated with specific drive system configurations in vehicles. Rear-wheel drive (RWD) vehicles typically employ a rear drive shaft to transfer power from the engine or transmission to the rear wheels.

In RWD vehicles, the rear drive shaft is an integral part of the drivetrain system. It allows the engine’s power to be directed to the rear wheels, providing the necessary propulsion for the vehicle to move forward or backward.

5. Four-Wheel Drive Capability:

In vehicles equipped with four-wheel drive (4WD) or all-wheel drive (AWD) systems, the rear drive shaft also plays a role in power distribution to all four wheels. In these systems, the rear drive shaft transfers torque to the transfer case, which distributes power to both the front and rear differentials.

The transfer case receives torque from the rear drive shaft and splits it between the front and rear axles, allowing power to be distributed to all four wheels. This enables enhanced traction, off-road capability, and improved vehicle performance in various driving conditions.

In summary, the rear drive shaft is a critical component in power distribution to the wheels of a vehicle. It transmits torque from the engine or transmission to the rear differential, which distributes power to the rear wheels. The rear drive shaft enables power distribution between the wheels, ensures stability and control, and is integral to specific drive system configurations, such as rear-wheel drive and four-wheel drive. Its role is essential in enabling vehicle propulsion and optimizing power distribution for various driving conditions.

China wholesaler Alloy Steel Forging Drive Shaft Yoke for Farm Tractor  China wholesaler Alloy Steel Forging Drive Shaft Yoke for Farm Tractor
editor by CX 2024-05-09