Tag Archives: shaft wholesaler

China wholesaler Professional Production Drive Shaft Cardan Shaft Power Transmission Shaft Spline Shaft

Product Description

Transmission shaft

Product Description

 

Product Name Transmission shaft
Design Can be at the customer’ request, tailor-made, at customer’s design
Advantage ZJD can provide the transmission shaft according to customers technical specifications.

 

    Our Advantages

    Application

      

     

    Product Display

    Company Profile

    ZJD is located in Xihu (West Lake) Dis. Economic Development Zone, Xihu (West Lake) Dis. District, HangZhou, ZheJiang , which has very good transportation convenience and location advantages.ZJD own 1 subsidiary, which is located in HangZhou city, ZheJiang province, which is mainly responsible for EMU accessories for CRRC’s factory nearby.
    ZJD’s production and office space is more than 12,000 square meters, and more than 60 sets of various types of CNC machining and quality control equipment.ZJD’s main products are widely used in CZPT CR400, CR300, CR200 series standard EMUs, and expanded to subways, export passenger cars and EMUs and other products.
    ZJD has more than 60 employees and more than 20 technical management personnel. The technical management team has many years of working experience in the rail transit industry. 

    Certifications

    ZJD has obtained the national high-tech enterprise certification, 6 types of products have passed the high-tech certification, and related products have obtained more than 20 patents. 
    ZJD has established a comprehensive quality management system and has got ISO9001 quality management system certification, ISO/TS 22163 (IRIS) international railway industry standard certification, EN15085-2 railway vehicles welding system certification, and CZPT product supply service qualification certification. 

    FAQ

    1. Who are we?

    HangZhou ZJD Rail Equipment Co.,Ltd. was established in 2012, which is a professional manufacturer of rail equipment and accessories.

    2. Are you a reliable supplier?
    ZJD-Excellent Manufacturer focusing on the rolling stock industry
    Provide full-process Design, Production, Testing and Service according to customer requirements.

    3.What can you buy from us?
    We have designed and supplied a series of products such an air duct systems, piping systerms, pneumatic control units,etc.The product are used in various fields such an EMUs,subways,locomotives,wagon engineering vehicles,etc. 

    4. What services can we provide?
    Provide customized services of heavy industry products for special requirements.
    Provide diversified parts and trade services such as port machinery, steel heavy industry, mining machinery, etc.
    Provide customized products for new energy equipment
    Provide key process technology solutions for special parts in the field of new energy equipment.

     

    Material: Carbon Steel
    Load: Revolution Axis
    Stiffness & Flexibility: Flexible Shaft
    Axis Shape: Straight Shaft
    Shaft Shape: Real Axis
    Appearance Shape: Round
    Customization:
    Available

    |

    Customized Request

    pto shaft

    What factors should be considered when selecting the right drive shaft for an application?

    When selecting the right drive shaft for an application, several factors need to be considered. The choice of drive shaft plays a crucial role in ensuring efficient and reliable power transmission. Here are the key factors to consider:

    1. Power and Torque Requirements:

    The power and torque requirements of the application are essential considerations. It is crucial to determine the maximum torque that the drive shaft will need to transmit without failure or excessive deflection. This includes evaluating the power output of the engine or power source, as well as the torque demands of the driven components. Selecting a drive shaft with the appropriate diameter, material strength, and design is essential to ensure it can handle the expected torque levels without compromising performance or safety.

    2. Operating Speed:

    The operating speed of the drive shaft is another critical factor. The rotational speed affects the dynamic behavior of the drive shaft, including the potential for vibration, resonance, and critical speed limitations. It is important to choose a drive shaft that can operate within the desired speed range without encountering excessive vibrations or compromising the structural integrity. Factors such as the material properties, balance, and critical speed analysis should be considered to ensure the drive shaft can handle the required operating speed effectively.

    3. Length and Alignment:

    The length and alignment requirements of the application must be considered when selecting a drive shaft. The distance between the engine or power source and the driven components determines the required length of the drive shaft. In situations where there are significant variations in length or operating angles, telescopic drive shafts or multiple drive shafts with appropriate couplings or universal joints may be necessary. Proper alignment of the drive shaft is crucial to minimize vibrations, reduce wear and tear, and ensure efficient power transmission.

    4. Space Limitations:

    The available space within the application is an important factor to consider. The drive shaft must fit within the allocated space without interfering with other components or structures. It is essential to consider the overall dimensions of the drive shaft, including length, diameter, and any additional components such as joints or couplings. In some cases, custom or compact drive shaft designs may be required to accommodate space limitations while maintaining adequate power transmission capabilities.

    5. Environmental Conditions:

    The environmental conditions in which the drive shaft will operate should be evaluated. Factors such as temperature, humidity, corrosive agents, and exposure to contaminants can impact the performance and lifespan of the drive shaft. It is important to select materials and coatings that can withstand the specific environmental conditions to prevent corrosion, degradation, or premature failure of the drive shaft. Special considerations may be necessary for applications exposed to extreme temperatures, water, chemicals, or abrasive substances.

    6. Application Type and Industry:

    The specific application type and industry requirements play a significant role in drive shaft selection. Different industries, such as automotive, aerospace, industrial machinery, agriculture, or marine, have unique demands that need to be addressed. Understanding the specific needs and operating conditions of the application is crucial in determining the appropriate drive shaft design, materials, and performance characteristics. Compliance with industry standards and regulations may also be a consideration in certain applications.

    7. Maintenance and Serviceability:

    The ease of maintenance and serviceability should be taken into account. Some drive shaft designs may require periodic inspection, lubrication, or replacement of components. Considering the accessibility of the drive shaft and associated maintenance requirements can help minimize downtime and ensure long-term reliability. Easy disassembly and reassembly of the drive shaft can also be beneficial for repair or component replacement.

    By carefully considering these factors, one can select the right drive shaft for an application that meets the power transmission needs, operating conditions, and durability requirements, ultimately ensuring optimal performance and reliability.

    pto shaft

    What safety precautions should be followed when working with drive shafts?

    Working with drive shafts requires adherence to specific safety precautions to prevent accidents, injuries, and damage to equipment. Drive shafts are critical components of a vehicle or machinery’s driveline system and can pose hazards if not handled properly. Here’s a detailed explanation of the safety precautions that should be followed when working with drive shafts:

    1. Personal Protective Equipment (PPE):

    Always wear appropriate personal protective equipment when working with drive shafts. This may include safety goggles, gloves, steel-toed boots, and protective clothing. PPE helps protect against potential injuries from flying debris, sharp edges, or accidental contact with moving parts.

    2. Lockout/Tagout Procedures:

    Before working on a drive shaft, ensure that the power source is properly locked out and tagged out. This involves isolating the power supply, such as shutting off the engine or disconnecting the electrical power, and securing it with a lockout/tagout device. This prevents accidental engagement of the drive shaft while maintenance or repair work is being performed.

    3. Vehicle or Equipment Support:

    When working with drive shafts in vehicles or equipment, use proper support mechanisms to prevent unexpected movement. Securely block the vehicle’s wheels or utilize support stands to prevent the vehicle from rolling or shifting during drive shaft removal or installation. This helps maintain stability and reduces the risk of accidents.

    4. Proper Lifting Techniques:

    When handling heavy drive shafts, use proper lifting techniques to prevent strain or injuries. Lift with the help of a suitable lifting device, such as a hoist or jack, and ensure that the load is evenly distributed and securely attached. Avoid lifting heavy drive shafts manually or with improper lifting equipment, as this can lead to accidents and injuries.

    5. Inspection and Maintenance:

    Prior to working on a drive shaft, thoroughly inspect it for any signs of damage, wear, or misalignment. If any abnormalities are detected, consult a qualified technician or engineer before proceeding. Regular maintenance is also essential to ensure the drive shaft is in good working condition. Follow the manufacturer’s recommended maintenance schedule and procedures to minimize the risk of failures or malfunctions.

    6. Proper Tools and Equipment:

    Use appropriate tools and equipment specifically designed for working with drive shafts. Improper tools or makeshift solutions can lead to accidents or damage to the drive shaft. Ensure that tools are in good condition, properly sized, and suitable for the task at hand. Follow the manufacturer’s instructions and guidelines when using specialized tools or equipment.

    7. Controlled Release of Stored Energy:

    Some drive shafts, particularly those with torsional dampers or other energy-storing components, can store energy even when the power source is disconnected. Exercise caution when working on such drive shafts and ensure that the stored energy is safely released before disassembly or removal.

    8. Training and Expertise:

    Work on drive shafts should only be performed by individuals with the necessary training, knowledge, and expertise. If you are not familiar with drive shafts or lack the required skills, seek assistance from qualified technicians or professionals. Improper handling or installation of drive shafts can lead to accidents, damage, or compromised performance.

    9. Follow Manufacturer’s Guidelines:

    Always follow the manufacturer’s guidelines, instructions, and warnings specific to the drive shaft you are working with. These guidelines provide important information regarding installation, maintenance, and safety considerations. Deviating from the manufacturer’s recommendations may result in unsafe conditions or void warranty coverage.

    10. Disposal of Old or Damaged Drive Shafts:

    Dispose of old or damaged drive shafts in accordance with local regulations and environmental guidelines. Improper disposal can have negative environmental impacts and may violate legal requirements. Consult with local waste management authorities or recycling centers to ensure appropriate disposal methods are followed.

    By following these safety precautions, individuals can minimize the risks associated with working with drive shafts and promote a safe working environment. It is crucial to prioritize personal safety, use proper equipment and techniques, and seek professional help when needed to ensure the proper handling and maintenance of drive shafts.

    pto shaft

    What benefits do drive shafts offer for different types of vehicles and equipment?

    Drive shafts offer several benefits for different types of vehicles and equipment. They play a crucial role in power transmission and contribute to the overall performance, efficiency, and functionality of various systems. Here’s a detailed explanation of the benefits that drive shafts provide:

    1. Efficient Power Transmission:

    Drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. By connecting the engine or motor to the driven system, drive shafts efficiently transfer rotational power, allowing vehicles and equipment to perform their intended functions. This efficient power transmission ensures that the power generated by the engine is effectively utilized, optimizing the overall performance and productivity of the system.

    2. Versatility:

    Drive shafts offer versatility in their applications. They are used in various types of vehicles, including cars, trucks, motorcycles, and off-road vehicles. Additionally, drive shafts are employed in a wide range of equipment and machinery, such as agricultural machinery, construction equipment, industrial machinery, and marine vessels. The ability to adapt to different types of vehicles and equipment makes drive shafts a versatile component for power transmission.

    3. Torque Handling:

    Drive shafts are designed to handle high levels of torque. Torque is the rotational force generated by the engine or power source. Drive shafts are engineered to efficiently transmit this torque without excessive twisting or bending. By effectively handling torque, drive shafts ensure that the power generated by the engine is reliably transferred to the wheels or driven components, enabling vehicles and equipment to overcome resistance, such as heavy loads or challenging terrains.

    4. Flexibility and Compensation:

    Drive shafts provide flexibility and compensation for angular movement and misalignment. In vehicles, drive shafts accommodate the movement of the suspension system, allowing the wheels to move up and down independently. This flexibility ensures a constant power transfer even when the vehicle encounters uneven terrain. Similarly, in machinery, drive shafts compensate for misalignment between the engine or motor and the driven components, ensuring smooth power transmission and preventing excessive stress on the drivetrain.

    5. Weight Reduction:

    Drive shafts contribute to weight reduction in vehicles and equipment. Compared to other forms of power transmission, such as belt drives or chain drives, drive shafts are typically lighter in weight. This reduction in weight helps improve fuel efficiency in vehicles and reduces the overall weight of equipment, leading to enhanced maneuverability and increased payload capacity. Additionally, lighter drive shafts contribute to a better power-to-weight ratio, resulting in improved performance and acceleration.

    6. Durability and Longevity:

    Drive shafts are designed to be durable and long-lasting. They are constructed using materials such as steel or aluminum, which offer high strength and resistance to wear and fatigue. Drive shafts undergo rigorous testing and quality control measures to ensure their reliability and longevity. Proper maintenance, including lubrication and regular inspections, further enhances their durability. The robust construction and long lifespan of drive shafts contribute to the overall reliability and cost-effectiveness of vehicles and equipment.

    7. Safety:

    Drive shafts incorporate safety features to protect operators and bystanders. In vehicles, drive shafts are often enclosed within a protective tube or housing, preventing contact with moving parts and reducing the risk of injury in the event of a failure. Similarly, in machinery, safety shields or guards are commonly installed around exposed drive shafts to minimize the potential hazards associated with rotating components. These safety measures ensure the well-being of individuals operating or working in proximity to vehicles and equipment.

    In summary, drive shafts offer several benefits for different types of vehicles and equipment. They enable efficient power transmission, provide versatility in various applications, handle torque effectively, offer flexibility and compensation, contribute to weight reduction, ensure durability and longevity, and incorporate safety features. By providing these advantages, drive shafts enhance the performance, efficiency, reliability, and safety of vehicles and equipment across a wide range of industries.

    China wholesaler Professional Production Drive Shaft Cardan Shaft Power Transmission Shaft Spline Shaft  China wholesaler Professional Production Drive Shaft Cardan Shaft Power Transmission Shaft Spline Shaft
    editor by CX 2023-08-29

    China wholesaler Tractor Pto Driveshaft Driveline Factory Hollow Spline Cardan Adapter Universal Joint Yoke Flexible Front Prop Rear CV Axle Propeller Automobile Drive Shaft

    Product Description

    Tractor Pto Driveshaft Driveline Factory Hollow Spline Cardan Adapter Universal Joint Yoke Flexible Front Prop Rear CV Axle Propeller Automobile Drive Shaft

     

    Product Description

    Agricultural truck universal joint steering

    PTO Shaft
     

    Function of PTO Shaft Drive Shaft Parts & Power Transmission
    Usage of PTO Shaft Kinds of Tractors & Farm Implements
    Yoke Types for PTO Shaft Double push pin, Bolt pins, Split pins, Pushpin, Quick release, Ball attachment, Collar…..
    Processing Of Yoke Forging
    PTO Shaft Plastic Cover YW; BW; YS; BS; Etc
    Colors of PTO Shaft Green; Orange; Yellow; Black Ect.
    PTO Shaft Series T1-T10; L1-L6;S6-S10;10HP-150HP with SA,RA,SB,SFF,WA,CV Etc
    Tube Types for PTO Shaft Lemon, Triangular, Star, Square, Hexangular, Spline, Special Ect
    Processing Of Tube Cold drawn
    Spline Types for PTO Shaft 1 1/8″ Z6;1 3/8″ Z6; 1 3/8″ Z21 ;1 3/4″ Z20; 1 3/4″ Z6; 8-38*32*6 8-42*36*7; 8-48*42*8;

    We also sell accessories for the pto shaft, including :
    Yoke: CV socket yoke, CV weld yoke, flange yoke, end yoke, weld yoke, slip yoke
    CV center housing, tube, spline, CV socket flange, u-joint, dust cap

    Light vehicle drive line
    Our products can be used for transmission shafts of the following brands
    Toyota, Mitsubishi, Nissan, Isu  zu, Suzuki, Dafa, Honda, Hyundai, Mazda, Fiat, Re  nault, Kia, Dacia, Ford. Dodge, Land Rover, Peu geot, Volkswagen Audi, BMW Benz Volvo, Russian models

    Gear shaft

    Company Profile

     

     

     

    Related Products

    Application:

    Company information:

     

    Material: Carbon Steel
    Load: Drive Shaft
    Stiffness & Flexibility: Stiffness / Rigid Axle
    Journal Diameter Dimensional Accuracy: IT6-IT9
    Axis Shape: Straight Shaft
    Shaft Shape: Real Axis
    Samples:
    US$ 38/Piece
    1 Piece(Min.Order)

    |
    Request Sample

    pto shaft

    How Do Rear Drive Shafts Accommodate Variations in Length and Connection Methods?

    Rear drive shafts are designed to accommodate variations in length and connection methods to ensure proper fitment and functionality in different vehicle configurations. These variations arise due to differences in vehicle size, drivetrain layout, suspension geometry, and other factors. Rear drive shafts employ several mechanisms and design considerations to adapt to these variations. Here’s a detailed explanation of how rear drive shafts accommodate variations in length and connection methods:

    1. Telescoping Design:

    Rear drive shafts often incorporate a telescoping design that allows for length adjustments. Telescoping drive shafts consist of two or more tubular sections that can slide in and out of each other, enabling changes in length. This design is beneficial when vehicles have adjustable suspension systems or when there is a need to accommodate variations in the distance between the transmission output shaft and the rear axle. By adjusting the telescoping sections, rear drive shafts can be extended or retracted to match the required length, ensuring proper alignment and engagement of the drivetrain components.

    2. Slip Yokes:

    Slip yokes are commonly used in rear drive shafts to allow for axial movement and compensate for changes in length. A slip yoke is a splined component that connects the drive shaft to the transmission output shaft. It is designed to slide in and out of the drive shaft, allowing for length adjustments. As the suspension moves or the rear axle travels up and down, the slip yoke accommodates the changes in distance between the transmission and the rear axle, maintaining constant engagement and power transfer. Slip yokes are often used in conjunction with telescoping drive shafts to provide a wider range of length adjustability.

    3. Universal Joints (U-Joints) and Constant Velocity (CV) Joints:

    Rear drive shafts utilize different types of joints, such as universal joints (U-joints) or constant velocity (CV) joints, to accommodate variations in connection methods. U-joints are commonly used in rear drive shafts and allow for angular movement between two shafts. They can handle misalignment and changes in operating angles, making them suitable for applications where the rear axle and transmission output shaft are not perfectly aligned. CV joints, on the other hand, are used in applications that require constant velocity and smooth power transfer, such as in vehicles with independent rear suspension. CV joints accommodate variations in length and allow for a wider range of articulation angles while maintaining a constant velocity of the drive shaft.

    4. Flange Connections and Bolt Patterns:

    Rear drive shafts feature flange connections at each end to facilitate attachment to the transmission output shaft and the rear axle. The flanges are designed with specific bolt patterns that correspond to the mating surfaces on the transmission and axle. These bolt patterns ensure proper alignment and secure attachment of the drive shaft to the drivetrain components. The bolt patterns may vary depending on the vehicle manufacturer, drivetrain configuration, and specific model. By accommodating different flange connections and bolt patterns, rear drive shafts can be compatible with a wide range of vehicles and drivetrain layouts.

    5. Customization and Engineering:

    In some cases, rear drive shafts may require customization and engineering to accommodate specific variations in length and connection methods. Vehicle manufacturers, aftermarket suppliers, and drivetrain specialists have the expertise to design and manufacture custom drive shafts to meet unique requirements. This may involve fabricating drive shafts with specific lengths, spline counts, or joint configurations that are not readily available in standard off-the-shelf options. Customization allows for precise adaptation of rear drive shafts to fit vehicles with non-standard drivetrain configurations or to address specific challenges posed by unique suspension setups or vehicle modifications.

    In summary, rear drive shafts accommodate variations in length and connection methods through telescoping designs, slip yokes, universal joints (U-joints), constant velocity (CV) joints, flange connections, bolt patterns, and customization. These features and design considerations ensure proper fitment, alignment, and engagement of the rear drive shaft in different vehicle configurations. By incorporating these mechanisms, rear drive shafts provide the flexibility and adaptability necessary to accommodate variations in length and connection methods, enabling efficient power transfer and reliable operation in diverse drivetrain layouts.

    pto shaft

    How Do Rear Drive Shafts Enhance the Traction and Stability of Off-Road Vehicles?

    Rear drive shafts play a crucial role in enhancing the traction and stability of off-road vehicles. Off-road driving presents unique challenges, such as uneven terrain, steep inclines, loose surfaces, and obstacles, where maintaining traction and stability is vital. Here’s a detailed explanation of how rear drive shafts contribute to enhancing the traction and stability of off-road vehicles:

    1. Power Distribution:

    Rear drive shafts are responsible for transmitting torque from the transfer case or transmission to the rear differential or rear axle in off-road vehicles. This power distribution allows the rear wheels to receive torque and apply it to the ground, enhancing traction. By providing power to the rear wheels, the rear drive shafts ensure that the wheels dig into the terrain, maximizing grip and reducing the chances of wheel spin. This power distribution contributes to maintaining forward momentum and preventing loss of traction in challenging off-road conditions.

    2. Rear-Wheel Traction:

    Rear drive shafts enable rear-wheel traction, which is crucial for off-road vehicles. When traversing uneven or slippery terrain, the weight of the vehicle shifts to the rear wheels during acceleration. The rear drive shafts deliver torque to the rear wheels, allowing them to maintain traction and effectively propel the vehicle forward. By ensuring rear-wheel traction, the drive shafts help the off-road vehicle overcome obstacles, climb steep inclines, and navigate challenging off-road terrains where maintaining grip is essential.

    3. Weight Transfer:

    Rear drive shafts contribute to proper weight transfer during off-road driving. As the vehicle encounters obstacles or uneven terrain, weight transfer occurs, with the weight shifting from one wheel to another. The rear drive shafts aid in balancing the weight distribution, preventing excessive weight transfer to a single wheel. This balanced weight transfer improves stability and minimizes the chances of wheel lift or loss of control. It allows the off-road vehicle to maintain stability and traction, enhancing overall safety and performance.

    4. Axle Articulation:

    Off-road vehicles often require significant axle articulation to maintain contact between the wheels and the ground, especially when navigating rough terrain. Rear drive shafts accommodate the movement and flexing of the suspension system, allowing the rear wheels to articulate independently. This flexibility enables the wheels to maintain contact with the ground, even when encountering large obstacles or uneven surfaces. By adapting to the changing terrain, the rear drive shafts contribute to improved traction and stability, ensuring the off-road vehicle can maintain forward momentum.

    5. Torque Control:

    Rear drive shafts play a role in torque control, which is essential for maintaining traction and stability off-road. Some off-road vehicles feature differential locks or limited-slip differentials in the rear axle. The rear drive shafts transmit torque to these differentials, allowing for better power distribution between the rear wheels. This torque control helps prevent wheelspin and ensures that power is delivered to the wheels with traction, enhancing overall traction and stability in challenging off-road conditions.

    6. Ground Clearance:

    Rear drive shafts contribute to improving ground clearance in off-road vehicles. The design and positioning of the drive shafts allow for higher ground clearance compared to vehicles with front-wheel drive configurations. Increased ground clearance reduces the risk of the drive shafts scraping or getting damaged by obstacles, rocks, or uneven surfaces. By providing adequate ground clearance, the rear drive shafts enable the off-road vehicle to navigate rough terrain without hindrance, maintaining traction and stability.

    7. Durability and Reliability:

    Rear drive shafts in off-road vehicles are designed to withstand the demanding conditions encountered during off-road driving. They are built to be robust and durable, capable of withstanding impacts, vibrations, and extreme articulation. The reliability and strength of the rear drive shafts contribute to maintaining traction and stability by ensuring that the power transmission remains intact, even in challenging off-road situations.

    In summary, rear drive shafts enhance the traction and stability of off-road vehicles through power distribution, rear-wheel traction, weight transfer management, axle articulation accommodation, torque control, increased ground clearance, and durability. These factors collectively contribute to maintaining traction, allowing the off-road vehicle to overcome obstacles, navigate challenging terrains, and ensure stability and control in off-road driving conditions.

    pto shaft

    Which Types of Vehicles Commonly Use Rear Drive Shafts in Their Drivetrain?

    Rear drive shafts are a common feature in several types of vehicles, particularly those that utilize rear-wheel drive (RWD) or four-wheel drive (4WD) drivetrain configurations. These vehicles rely on rear drive shafts to transmit power from the engine or transmission to the rear wheels. Here’s a detailed explanation of the types of vehicles that commonly use rear drive shafts in their drivetrain:

    1. Rear-Wheel Drive (RWD) Vehicles:

    Rear drive shafts are most commonly found in RWD vehicles. In RWD configurations, the engine’s power is sent to the rear wheels through the transmission and rear differential. The rear drive shaft connects the output of the transmission or transfer case to the input of the rear differential, allowing power transmission to the rear wheels. This setup is commonly used in sports cars, luxury sedans, pickup trucks, and some SUVs.

    2. Four-Wheel Drive (4WD) and All-Wheel Drive (AWD) Vehicles:

    Many 4WD and AWD vehicles also utilize rear drive shafts as part of their drivetrain systems. These vehicles provide power to all four wheels, enhancing traction and off-road capability. In 4WD systems, the rear drive shaft transfers power from the transfer case to the rear differential and front differential, enabling torque distribution to both the front and rear wheels. This setup is commonly found in off-road vehicles, SUVs, trucks, and some performance cars.

    3. Trucks and Commercial Vehicles:

    Rear drive shafts are essential components in trucks and commercial vehicles. These vehicles often have rear-wheel drive or part-time 4WD systems to handle heavy loads, towing, and demanding work conditions. The rear drive shafts in trucks and commercial vehicles are designed to endure higher torque and load capacities, ensuring reliable power transmission to the rear wheels.

    4. SUVs and Crossovers:

    Many SUVs and crossovers employ rear drive shafts, especially those with RWD or 4WD/AWD configurations. These vehicles often prioritize versatility, off-road capability, and towing capacity. Rear drive shafts enable power transmission to the rear wheels, enhancing traction and stability both on and off the road. SUVs and crossovers with 4WD or AWD systems can distribute torque to all four wheels, improving performance in various weather and terrain conditions.

    5. Performance and Sports Cars:

    Performance and sports cars frequently utilize rear drive shafts as part of their drivetrain systems. RWD configurations are common in these vehicles, as they offer better weight distribution, improved handling, and enhanced control during high-performance driving. Rear drive shafts enable efficient power delivery to the rear wheels, contributing to the vehicle’s acceleration, stability, and overall performance.

    6. Muscle Cars and Classic Vehicles:

    Muscle cars and classic vehicles often feature rear drive shafts due to their traditional RWD setups. These vehicles evoke a nostalgic driving experience and typically prioritize power and rear-wheel traction. Rear drive shafts play a crucial role in transmitting power and torque from the engine to the rear wheels, allowing muscle cars and classic vehicles to deliver the desired performance and driving dynamics.

    In summary, rear drive shafts are commonly found in various types of vehicles, including RWD vehicles, 4WD/AWD vehicles, trucks, SUVs, crossovers, performance cars, muscle cars, and classic vehicles. These vehicles rely on rear drive shafts to transmit power from the engine or transmission to the rear wheels, ensuring efficient power delivery, traction, and drivetrain performance.

    China wholesaler Tractor Pto Driveshaft Driveline Factory Hollow Spline Cardan Adapter Universal Joint Yoke Flexible Front Prop Rear CV Axle Propeller Automobile Drive Shaft  China wholesaler Tractor Pto Driveshaft Driveline Factory Hollow Spline Cardan Adapter Universal Joint Yoke Flexible Front Prop Rear CV Axle Propeller Automobile Drive Shaft
    editor by CX 2023-08-22

    China wholesaler CZPT Swp B Type Telescopic Short High Quality Transmission Drive Shaft Coupling Shafts manufacturer

    Product Description

    SWP B Type Telescopic Short Cardan Shaft(JB/T3241-1991)

    Description
    HUADING Cardan Shafts or called universal joint shafts facilitate reliable torque transfer between spatially remote drive and output trains. Cardan shafts from CZPT offer suitable mechanical drive solutions in nearly all industrial sectors due to their versatile design and high efficiency.
    No machine element other than a cardan shaft allows power transmission of torque between spacially offset driving and driven shafts whose position can be changed during operation.
    Thus, cardan shafts have become an indispensable transmission component in industrial production.
    Cardan shaft is widely used in rolling mill, punch, straightener, crusher, ship drive,paper making equipment, common machinery, water pump equipment,test bench and other mechanical applications.

    Examples of tags:
    Tactical diameter D=390mm, installation length L=1510mm, type B universal coupling;
    SWP390Bx1510 coupling JB/T 3241-91

    Detailed Pictures

    Basic Parameter and Main Dimension(JB/T3241-1991)

    Type Tactical diameter
    D
    mm
     
    Nominal torque
    Tn
    kN·m
    Fatique torque Tf
    kN·m
    Axis
    angle
    β
    (°)
    Stretch
    length
    S
    mm
    Size(mm) Rotary
    inertia
    kg·m2
     
    Mass
    kg
    L D1
    js11
    D2
    H7
    D3 E E1 B×h h1 L1 n-d
    SWP160B 160 16 8 ≤10 50 585 140 95 114 15 4 20×12 6 85 6-13 0.14 44
    SWP180B 180 20 10 ≤10 60 640 155 105 121 15 4 24×14 7 95 6-15 0.23 54
    SWP200B 200 31.5 16 ≤10 70 730 175 125 17 17 5 28×16 8 110 8-15 0.36 75
    SWP225B 225 40 20 ≤10 76 830 196 135 152 20 5 32×18 9 130 8-17 0.61 108
    SWP250B 250 63 31.5 ≤10 80 860 218 150 168 25 5 40×25 12.5 135 8-19 0.98 138
    SWP285B 285 90 45 ≤10 100 1000 245 170 194 27 7 40×30 15 150 8-21 2.12 229
    SWP315B 315 140 63 ≤10 110 1120 280 185 219 32 7 40×30 15 170 10-23 3.80 309
    SWP350B 350 180 90 ≤10 120 1230 310 210 245 35 8 50×32 16 185 10-23 6.60 408
    SWP390B 390 250 112 ≤10 120 1310 345 235 273 40 8 70×36 18 205 10-25 10.50 539
    SWP435B 435 355 160 ≤10 150 1555 385 255 299 42 10 80×40 20 235 16-28 22.39 903
    SWP480B 480 450 224 ≤10 170 1740 425 275 351 47 12 90×45 22.5 265 16-31 38.21 1243
    SWP550B 550 710 315 ≤10 190 1905 492 320 402 50 12 100×45 22.5 290 16-31 61.00 1643
    SWP600B 600 1000 500 ≤10 210 2600 544 380 450 55 15 90×55 27.5 360 22-34 99.13 2335
    SWP640B 640 1250 630 ≤10 230 2780 575 385 480 60 15 100×60 30 385 18-38 170.21 2720

    Note:  L is the length of installation, including the value of S/Z shrinkage.

    ♦Packaging & Shipping
     
    ♦Other Products List

    Transmission Machinery 
    Parts Name
    Model
    Universal Coupling WS,WSD,WSP
    Cardan Shaft SWC,SWP,SWZ
    Tooth Coupling CL,CLZ,GCLD,GIICL,
    GICL,NGCL,GGCL,GCLK
    Disc Coupling JMI,JMIJ,JMII,JMIIJ
    High Flexible Coupling LM
    Chain Coupling GL
    Jaw Coupling LT
    Grid Coupling JS

     

    Company Profile

    HangZhou CZPT Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
    Advanced and reasonable process, complete detection means. Our company actively introduce foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
    Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

     

     
    ♦Our Services
    1.Design Services
    Our design team has experience in cardan shaft relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

    2.Product Services
    Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing → Shipping

    3.Samples Procedure
    We could develop the sample according to your requirement and amend the sample constantly to meet your need.

    4.Research & Development
    We usually research the new needs of the market and develop the new model when there is new cars in the market.

    5.Quality Control
    Every step should be special test by Professional Staff according to the standard of ISO9001 and TS16949.

    FAQ
    Q 1: Are you trading company or manufacturer?
    A: We are a professional manufacturer specializing in manufacturing various series of couplings.

    Q 2: Can you do OEM?
    Yes, we can. We can do OEM & ODM for all the customers with customized artworks of PDF or AI format.

    Q 3: How long is your delivery time?
    Generally it is 20-30 days if the goods are not in stock. It is according to quantity.

    Q 4: Do you provide samples? Is it free or extra?
    Yes, we could offer the sample but not for free. Actually we have a very good price principle, when you make the bulk order then cost of sample will be deducted.

    Q 5: How long is your warranty?
    A: Our Warranty is 12 months under normal circumstance. 

    Q 6: What is the MOQ?
    A: Usually our MOQ is 1 pcs.

    Q 7: Do you have inspection procedures for coupling ?
    A: 100% self-inspection before packing.

    Q 8: Can I have a visit to your factory before the order? 
    A: Sure,welcome to visit our factory.

    Q 9: What’s your payment?
    A: T/T. 

    Contact Us
    Web: huadingcoupling
    Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

    Standard Or Nonstandard: Standard
    Shaft Hole: as Your Requirement
    Torque: as Your Requirement
    Bore Diameter: as Your Requirement
    Speed: as Your Requirement
    Structure: Flexible
    Samples:
    US$ 500/Piece
    1 Piece(Min.Order)

    |
    Request Sample

    Customization:
    Available

    |

    Customized Request

    air-compressor

    How to tell if your driveshaft needs replacing

    What is the cause of the unbalanced drive shaft? Unstable U-joint? Your car may make clicking noises while driving. If you can hear it from both sides, it might be time to hand it over to the mechanic. If you’re not sure, read on to learn more. Fortunately, there are many ways to tell if your driveshaft needs replacing.

    unbalanced

    An unbalanced driveshaft can be the source of strange noises and vibrations in your vehicle. To fix this problem, you should contact a professional. You can try a number of things to fix it, including welding and adjusting the weight. The following are the most common methods. In addition to the methods above, you can use standardized weights to balance the driveshaft. These standardized weights are attached to the shaft by welders.
    An unbalanced drive shaft typically produces lateral vibrations per revolution. This type of vibration is usually caused by a damaged shaft, missing counterweights, or a foreign object stuck on the drive shaft. On the other hand, torsional vibrations occur twice per revolution, and they are caused by shaft phase shifts. Finally, critical speed vibration occurs when the RPM of the drive shaft exceeds its rated capacity. If you suspect a driveshaft problem, check the following:
    Manually adjusting the imbalance of a drive shaft is not the easiest task. To avoid the difficulty of manual balancing, you can choose to use standardized weights. These weights are fixed on the outer circumference of the drive shaft. The operator can manually position the weight on the shaft with special tools, or use a robot. However, manual balancers have many disadvantages.

    unstable

    When the angular velocity of the output shaft is not constant, it is unstable. The angular velocity of the output shaft is 0.004 at ph = 29.5 and 1.9 at t = 1.9. The angular velocity of the intermediate shaft is not a problem. But when it’s unstable, the torque applied to it is too much for the machine. It might be a good idea to check the tension on the shaft.
    An unstable drive shaft can cause a lot of noise and mechanical vibration. It can lead to premature shaft fatigue failure. CZPT studies the effect of shaft vibration on the rotor bearing system. They investigated the effect of flex coupling misalignment on the vibration of the rotor bearing system. They assume that the vibrational response has two components: x and y. However, this approach has limited application in many situations.
    Experimental results show that the presence of cracks in the output shaft may mask the unbalanced excitation characteristics. For example, the presence of superharmonic peaks on the spectrum is characteristic of cracks. The presence of cracks in the output shaft masks unbalanced excitation characteristics that cannot be detected in the transient response of the input shaft. Figure 8 shows that the frequency of the rotor increases at critical speed and decreases as the shaft passes the natural frequency.

    Unreliable

    If you’re having trouble driving your car, chances are you’ve run into an unreliable driveshaft. This type of drivetrain can cause the wheels to stick or not turn at all, and also limit the overall control of the car. Whatever the reason, these issues should be resolved as soon as possible. Here are some symptoms to look for when diagnosing a driveshaft fault. Let’s take a closer look.
    The first symptom you may notice is an unreliable drive shaft. You may feel vibrations, or hear noises under the vehicle. Depending on the cause, it could be a broken joint or a broken shaft. The good news is that driveshaft repairs are generally relatively inexpensive and take less time than a complete drivetrain replacement. If you’re not sure what to do, CZPT has a guide to replacing the U-connector.
    One of the most common signs of an unreliable driveshaft is clanging and vibration. These sounds can be caused by worn bushings, loose U-joints, or damaged center bearings. This can cause severe vibration and noise. You can also feel these vibrations through the steering wheel or the floor. An unreliable driveshaft is a symptom of a bigger problem.
    air-compressor

    Unreliable U-joints

    A car with an unreliable U-joint on the drive shaft can be dangerous. A bad u-joint can prevent the vehicle from driving properly and may even cause you trouble. Unreliable u-joints are cheap to replace and you should try getting parts from quality manufacturers. Unreliable U-joints can cause the car to vibrate in the chassis or gear lever. This is a sure sign that your car has been neglected in maintenance.
    Replacing a U-joint is not a complicated task, but it requires special tools and a lot of elbow grease. If you don’t have the right tools, or you’re unfamiliar with mechanical terminology, it’s best to seek the help of a mechanic. A professional mechanic will be able to accurately assess the problem and propose an appropriate solution. But if you don’t feel confident enough, you can replace your own U-connector by following a few simple steps.
    To ensure the vehicle’s driveshaft is not damaged, check the U-joint for wear and lubrication. If the U-joint is worn, the metal parts are likely to rub against each other, causing wear. The sooner a problem is diagnosed, the faster it can be resolved. Also, the longer you wait, the more you lose on repairs.

    damaged drive shaft

    The driveshaft is the part of the vehicle that connects the wheels. If the driveshaft is damaged, the wheels may stop turning and the vehicle may slow down or stop moving completely. It bears the weight of the car itself as well as the load on the road. So even a slight bend or break in the drive shaft can have dire consequences. Even a piece of loose metal can become a lethal missile if dropped from a vehicle.
    If you hear a screeching noise or growl from your vehicle when shifting gears, your driveshaft may be damaged. When this happens, damage to the u-joint and excessive slack in the drive shaft can result. These conditions can further damage the drivetrain, including the front half. You should replace the driveshaft as soon as you notice any symptoms. After replacing the driveshaft, you can start looking for signs of wear.
    A knocking sound is a sign of damage to the drive shaft. If you hear this sound while driving, it may be due to worn couplings, damaged propshaft bearings, or damaged U-joints. In some cases, the knocking noise can even be caused by a damaged U-joint. When this happens, you may need to replace the entire driveshaft, requiring a new one.
    air-compressor

    Maintenance fees

    The cost of repairing a driveshaft varies widely, depending on the type and cause of the problem. A new driveshaft costs between $300 and $1,300, including labor. Repairing a damaged driveshaft can cost anywhere from $200 to $300, depending on the time required and the type of parts required. Symptoms of a damaged driveshaft include unresponsiveness, vibration, chassis noise and a stationary car.
    The first thing to consider when estimating the cost of repairing a driveshaft is the type of vehicle you have. Some vehicles have more than one, and the parts used to make them may not be compatible with other cars. Even if the same car has two driveshafts, the damaged ones will cost more. Fortunately, many auto repair shops offer free quotes to repair damaged driveshafts, but be aware that such work can be complicated and expensive.

    China wholesaler CZPT Swp B Type Telescopic Short High Quality Transmission Drive Shaft Coupling Shafts   manufacturer China wholesaler CZPT Swp B Type Telescopic Short High Quality Transmission Drive Shaft Coupling Shafts   manufacturer
    editor by CX 2023-04-19

    China Hard Chrome Plated Hydraulic Cylinder Piston Shaft with Best Price and Good Quality wholesaler

    Product Description

    • If you have any queries, please truly feel totally free make contact with our client support!

    Material: Steel
    Load: Drive Shaft
    Stiffness & Flexibility: Stiffness / Rigid Axle
    Journal Diameter Dimensional Accuracy: IT6-IT9
    Axis Shape: Straight Shaft
    Shaft Shape: Real Axis
    Samples:
    US$ 0.5/Meter
    1 Meter(Min.Order)

    |
    Request Sample

    Customization:
    Available

    |

    Customized Request