Tag Archives: flange shaft

China Good quality Shaft CNC Machining Shaft Flange Shaft Roller Shaft Drive Shaft Gear Shaft Spline Shaft Logistics Equipment Shaft Conveyor Shaft Coater Shaft

Product Description

Product Description

rotation axis of rotation is due to the fact that as an object rotates, its points move in circles, and the centers of these circles lie on the same line.
Rotation is a common type of motion. When an object rotates, its points move in circles. The centers of these circles lie on the same line. This line is called the axis of rotation. Doors, Windows, grinding wheels, motor rotors, etc., have fixed rotating shaft, can only be rotated, but not translational. Several forces act on a body, and their rotational action on the body depends on the algebraic sum of their torques. If the algebraic sum of moments is equal to zero, the object will rotate uniformly with the original angular velocity or stay at rest.
The drive shaft is a rotating body with high speed and little support, so its dynamic balance is very important. The general drive shaft before leaving the factory must enter the action balance test, and the balance machine has been adjusted. For front-engine rear-wheel drive cars is the shaft that transfers the rotation of the transmission to the main reducer, which can be several segments, and the segments can be connected by universal joints.

Hebe (ZheJiang ) Industrial Co., LTD was founded in 2018. The company covers an area of 1500 square meter and has 15 employees, including 1 designer and 2 CNC programmers. Heber Company specializes in providing all kinds of parts processing. The process includes CNC milling, CNC turning, CNC grinding, large CNC machining, Wire cutting, EDM machining. Our machining accuracy can reach 0.005mm. Surface grinding finish up to 0.8um.mirror polish is up to 0.4um.
 company provides parts processing for various industries. For example, packaging machinery, slitter machine, aerospace, electronic machinery, cigarette machine, gear machinery, automatic assembly machine, power tools, semiconductor equipment, automobile production line, automobile, motorcycle, bicycle, 3D printer, plastic machinery, robot and so on. We can provide zinc plating, nickel plating, oxidation, heat treatment, chrome plating, PVD, spray, spray paint, black phosphating and other surface treatment processes.
Hebe can also provide mechanical assembly work for customers. We have skilled fitters and assembly workers. We can complete detailed work from CNC machining to assembly. PLC program, electronic parts procurement, automation components procurement, etc. We have assembled non – target automation equipment, slitting machines, packaging machines, etc.

Equipment name CNC lathe /CNC milling machine /CNC grinder /EDM/ vertical milling machine/linear cutting /4-5 axis CNC milling machine/large size CNC milling machine/Laser cutting/CNC Bending machine
Testing instrument Inside diameter measurement/outside diameter measurement/caliper/height measurement/CMM measurement
Material Steel/Aluminium alloy/ copper/ Alloy steel /Titanium alloy/ nylon /PTFE  /Stainless steel /mold steel/ Brass/copper/tungsten steel/high strength stainless steel
 
Surface treatment Polishing/electroplating/oxidation/spraying/nitriding/phosphating/heat treatment
Product packaging 1200x800mm tray/500x500x500mm carton/Customizable wooden cases/Designable packaging scheme
Customer industry Mechanical equipment/aerospace/automobile production line/automation equipment/bicycle/motorcycle/energy/chemical equipment/industrial electrical appliances
Software capability CAD 2007/ UG 10.0/ Solidwork
Delivery time Sample5-10 days/ Mass production 20-45days
Payment clause 30% advance payment +70% delivery payment T/T 
MOQ 1PCS

 

Packaging & Shipping

 

 

Application: Fastener, Auto and Motorcycle Accessory, Hardware Tool, Machinery Accessory
Standard: GB, China GB Code
Surface Treatment: Electroplating
Production Type: Batch Production
Machining Method: CNC Turning
Material: Steel, Alloy, Aluminum
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

Are there any limitations or disadvantages associated with drive shafts?

While drive shafts are widely used and offer several advantages, they also have certain limitations and disadvantages that should be considered. Here’s a detailed explanation of the limitations and disadvantages associated with drive shafts:

1. Length and Misalignment Constraints:

Drive shafts have a maximum practical length due to factors such as material strength, weight considerations, and the need to maintain rigidity and minimize vibrations. Longer drive shafts can be prone to increased bending and torsional deflection, leading to reduced efficiency and potential driveline vibrations. Additionally, drive shafts require proper alignment between the driving and driven components. Misalignment can cause increased wear, vibrations, and premature failure of the drive shaft or its associated components.

2. Limited Operating Angles:

Drive shafts, especially those using U-joints, have limitations on operating angles. U-joints are typically designed to operate within specific angular ranges, and operating beyond these limits can result in reduced efficiency, increased vibrations, and accelerated wear. In applications requiring large operating angles, constant velocity (CV) joints are often used to maintain a constant speed and accommodate greater angles. However, CV joints may introduce higher complexity and cost compared to U-joints.

3. Maintenance Requirements:

Drive shafts require regular maintenance to ensure optimal performance and reliability. This includes periodic inspection, lubrication of joints, and balancing if necessary. Failure to perform routine maintenance can lead to increased wear, vibrations, and potential driveline issues. Maintenance requirements should be considered in terms of time and resources when using drive shafts in various applications.

4. Noise and Vibration:

Drive shafts can generate noise and vibrations, especially at high speeds or when operating at certain resonant frequencies. Imbalances, misalignment, worn joints, or other factors can contribute to increased noise and vibrations. These vibrations may affect the comfort of vehicle occupants, contribute to component fatigue, and require additional measures such as dampers or vibration isolation systems to mitigate their effects.

5. Weight and Space Constraints:

Drive shafts add weight to the overall system, which can be a consideration in weight-sensitive applications, such as automotive or aerospace industries. Additionally, drive shafts require physical space for installation. In compact or tightly packaged equipment or vehicles, accommodating the necessary drive shaft length and clearances can be challenging, requiring careful design and integration considerations.

6. Cost Considerations:

Drive shafts, depending on their design, materials, and manufacturing processes, can involve significant costs. Customized or specialized drive shafts tailored to specific equipment requirements may incur higher expenses. Additionally, incorporating advanced joint configurations, such as CV joints, can add complexity and cost to the drive shaft system.

7. Inherent Power Loss:

Drive shafts transmit power from the driving source to the driven components, but they also introduce some inherent power loss due to friction, bending, and other factors. This power loss can reduce overall system efficiency, particularly in long drive shafts or applications with high torque requirements. It is important to consider power loss when determining the appropriate drive shaft design and specifications.

8. Limited Torque Capacity:

While drive shafts can handle a wide range of torque loads, there are limits to their torque capacity. Exceeding the maximum torque capacity of a drive shaft can lead to premature failure, resulting in downtime and potential damage to other driveline components. It is crucial to select a drive shaft with sufficient torque capacity for the intended application.

Despite these limitations and disadvantages, drive shafts remain a widely used and effective means of power transmission in various industries. Manufacturers continuously work to address these limitations through advancements in materials, design techniques, joint configurations, and balancing processes. By carefully considering the specific application requirements and potential drawbacks, engineers and designers can mitigate the limitations and maximize the benefits of drive shafts in their respective systems.

pto shaft

How do drive shafts handle variations in load and vibration during operation?

Drive shafts are designed to handle variations in load and vibration during operation by employing various mechanisms and features. These mechanisms help ensure smooth power transmission, minimize vibrations, and maintain the structural integrity of the drive shaft. Here’s a detailed explanation of how drive shafts handle load and vibration variations:

1. Material Selection and Design:

Drive shafts are typically made from materials with high strength and stiffness, such as steel alloys or composite materials. The material selection and design take into account the anticipated loads and operating conditions of the application. By using appropriate materials and optimizing the design, drive shafts can withstand the expected variations in load without experiencing excessive deflection or deformation.

2. Torque Capacity:

Drive shafts are designed with a specific torque capacity that corresponds to the expected loads. The torque capacity takes into account factors such as the power output of the driving source and the torque requirements of the driven components. By selecting a drive shaft with sufficient torque capacity, variations in load can be accommodated without exceeding the drive shaft’s limits and risking failure or damage.

3. Dynamic Balancing:

During the manufacturing process, drive shafts can undergo dynamic balancing. Imbalances in the drive shaft can result in vibrations during operation. Through the balancing process, weights are strategically added or removed to ensure that the drive shaft spins evenly and minimizes vibrations. Dynamic balancing helps to mitigate the effects of load variations and reduces the potential for excessive vibrations in the drive shaft.

4. Dampers and Vibration Control:

Drive shafts can incorporate dampers or vibration control mechanisms to further minimize vibrations. These devices are typically designed to absorb or dissipate vibrations that may arise from load variations or other factors. Dampers can be in the form of torsional dampers, rubber isolators, or other vibration-absorbing elements strategically placed along the drive shaft. By managing and attenuating vibrations, drive shafts ensure smooth operation and enhance overall system performance.

5. CV Joints:

Constant Velocity (CV) joints are often used in drive shafts to accommodate variations in operating angles and to maintain a constant speed. CV joints allow the drive shaft to transmit power even when the driving and driven components are at different angles. By accommodating variations in operating angles, CV joints help minimize the impact of load variations and reduce potential vibrations that may arise from changes in the driveline geometry.

6. Lubrication and Maintenance:

Proper lubrication and regular maintenance are essential for drive shafts to handle load and vibration variations effectively. Lubrication helps reduce friction between moving parts, minimizing wear and heat generation. Regular maintenance, including inspection and lubrication of joints, ensures that the drive shaft remains in optimal condition, reducing the risk of failure or performance degradation due to load variations.

7. Structural Rigidity:

Drive shafts are designed to have sufficient structural rigidity to resist bending and torsional forces. This rigidity helps maintain the integrity of the drive shaft when subjected to load variations. By minimizing deflection and maintaining structural integrity, the drive shaft can effectively transmit power and handle variations in load without compromising performance or introducing excessive vibrations.

8. Control Systems and Feedback:

In some applications, drive shafts may be equipped with control systems that actively monitor and adjust parameters such as torque, speed, and vibration. These control systems use sensors and feedback mechanisms to detect variations in load or vibrations and make real-time adjustments to optimize performance. By actively managing load variations and vibrations, drive shafts can adapt to changing operating conditions and maintain smooth operation.

In summary, drive shafts handle variations in load and vibration during operation through careful material selection and design, torque capacity considerations, dynamic balancing, integration of dampers and vibration control mechanisms, utilization of CV joints, proper lubrication and maintenance, structural rigidity, and, in some cases, control systems and feedback mechanisms. By incorporating these features and mechanisms, drive shafts ensure reliable and efficient power transmission while minimizing the impact of load variations and vibrations on overall system performance.

pto shaft

What benefits do drive shafts offer for different types of vehicles and equipment?

Drive shafts offer several benefits for different types of vehicles and equipment. They play a crucial role in power transmission and contribute to the overall performance, efficiency, and functionality of various systems. Here’s a detailed explanation of the benefits that drive shafts provide:

1. Efficient Power Transmission:

Drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. By connecting the engine or motor to the driven system, drive shafts efficiently transfer rotational power, allowing vehicles and equipment to perform their intended functions. This efficient power transmission ensures that the power generated by the engine is effectively utilized, optimizing the overall performance and productivity of the system.

2. Versatility:

Drive shafts offer versatility in their applications. They are used in various types of vehicles, including cars, trucks, motorcycles, and off-road vehicles. Additionally, drive shafts are employed in a wide range of equipment and machinery, such as agricultural machinery, construction equipment, industrial machinery, and marine vessels. The ability to adapt to different types of vehicles and equipment makes drive shafts a versatile component for power transmission.

3. Torque Handling:

Drive shafts are designed to handle high levels of torque. Torque is the rotational force generated by the engine or power source. Drive shafts are engineered to efficiently transmit this torque without excessive twisting or bending. By effectively handling torque, drive shafts ensure that the power generated by the engine is reliably transferred to the wheels or driven components, enabling vehicles and equipment to overcome resistance, such as heavy loads or challenging terrains.

4. Flexibility and Compensation:

Drive shafts provide flexibility and compensation for angular movement and misalignment. In vehicles, drive shafts accommodate the movement of the suspension system, allowing the wheels to move up and down independently. This flexibility ensures a constant power transfer even when the vehicle encounters uneven terrain. Similarly, in machinery, drive shafts compensate for misalignment between the engine or motor and the driven components, ensuring smooth power transmission and preventing excessive stress on the drivetrain.

5. Weight Reduction:

Drive shafts contribute to weight reduction in vehicles and equipment. Compared to other forms of power transmission, such as belt drives or chain drives, drive shafts are typically lighter in weight. This reduction in weight helps improve fuel efficiency in vehicles and reduces the overall weight of equipment, leading to enhanced maneuverability and increased payload capacity. Additionally, lighter drive shafts contribute to a better power-to-weight ratio, resulting in improved performance and acceleration.

6. Durability and Longevity:

Drive shafts are designed to be durable and long-lasting. They are constructed using materials such as steel or aluminum, which offer high strength and resistance to wear and fatigue. Drive shafts undergo rigorous testing and quality control measures to ensure their reliability and longevity. Proper maintenance, including lubrication and regular inspections, further enhances their durability. The robust construction and long lifespan of drive shafts contribute to the overall reliability and cost-effectiveness of vehicles and equipment.

7. Safety:

Drive shafts incorporate safety features to protect operators and bystanders. In vehicles, drive shafts are often enclosed within a protective tube or housing, preventing contact with moving parts and reducing the risk of injury in the event of a failure. Similarly, in machinery, safety shields or guards are commonly installed around exposed drive shafts to minimize the potential hazards associated with rotating components. These safety measures ensure the well-being of individuals operating or working in proximity to vehicles and equipment.

In summary, drive shafts offer several benefits for different types of vehicles and equipment. They enable efficient power transmission, provide versatility in various applications, handle torque effectively, offer flexibility and compensation, contribute to weight reduction, ensure durability and longevity, and incorporate safety features. By providing these advantages, drive shafts enhance the performance, efficiency, reliability, and safety of vehicles and equipment across a wide range of industries.

China Good quality Shaft CNC Machining Shaft Flange Shaft Roller Shaft Drive Shaft Gear Shaft Spline Shaft Logistics Equipment Shaft Conveyor Shaft Coater Shaft  China Good quality Shaft CNC Machining Shaft Flange Shaft Roller Shaft Drive Shaft Gear Shaft Spline Shaft Logistics Equipment Shaft Conveyor Shaft Coater Shaft
editor by CX 2023-09-11

China Good quality SWC550wf Double Flange Design Without Length Compensation for Steel Rolling Mill High Speed/High Torque Universaljoint Shaft/Cardan Shaft/Drive Shaft

Product Description

Professional Cardan Shaft with ISO Certificate for Rolling mill

SWC-WF Flanged shaft design, without length compensation
TYPE Gyration Diameter D/mm Nominal torque   Tn
/kN·m
   Fatigue torque  Tf
/kN·m
Bearing life ratio     KL Axis angel
β/(.)
Dimension/mm Moment of inertia I/kg·m2 Weight/kg
Lmin D1
(js11)
D2
(H7)
D3 Lm n×Φd k t b
(h9)
g Lmin Each additional 100m Lmin Each additional 100mm
SWC180WF 180 22.4 11.2 0.245 ≤15 560 155 105 114 110 8×Φ17 17 5 24 7 0.248 0.007 58 2.8
SWC200WF 200 36 18 1.115 ≤15 585 170 120 133 115 8×Φ17 17 5 28 8 0.316 0.013 82 3.7
SWC225WF 225 56 28 7.812 ≤15 610 196 135 152 120 8×Φ17 20 5 32 9 0.636 0.571 93 4.9
SWC250WF 250 80 40 2.82×101 ≤15 715 218 150 168 140 8×Φ19 25 6 40 12.5 1.352 0.571 143 5.3
SWC285WF 285 120 58 8.28×101 ≤15 810 245 170 194 160 8×Φ21 27 7 40 15 2.664 0.051 220 6.3
SWC315WF 315 160 80 2.79×102 ≤15 915 280 185 219 180 10×Φ23 32 8 40 15 4.469 0.08 300 8
SWC350WF 350 225 110 7.44×102 ≤15 980 310 210 245 194 10×Φ23 35 8 50 16 7.189 0.146 387 11.5
SWC390WF 390 320 160 1.86×103 ≤15 1100 345 235 267 215 10×Φ25 40 8 70 18 13.18 0.222 588 15
SWC440WF 440 500 250 8.25×103 ≤15 1290 390 255 325 260 16×Φ28 42 10 80 20 23.25 0.474 880 21.7
SWC490WF 490 700 350 2.154×104 ≤15 1360 435 275 351 270 16×Φ31 47 12 90 22.5 41.89 0.690 1263 27.3
SWC550WF 550 1000 500 6.335×104 ≤15 1510 492 320 426 305 16×Φ31 50 12 100 22.5 68.48 1.357 1663 34

 

Dynamic Balance Testing:

Three Coordinate Detection

Code Each Part:

CNC processing center:

 

structure universal Flexible or Rigid Rigid Standard or Nonstandard Nonstandard
Material Alloy steel Brand name QSCD Place or origin HangZhou,China
Model SWC medium Raw material heat treatment Lenghth depend on specification
Flange Dia 160mm-620mm Normal torque depend on specification Coating heavy duty industrial paint
Paint color Customization Application Rolling mill machinery OEM/ODM Available
Certificate ISO,SGS Price depend on specification Custom service Available

Frequently Asked Questions

 

 

Q5: Let’s talk about our inquiry?

 

 

 

 

Q4:Do you test all your goods before delivery?

 

A: Certainly, we do dynamic balance testing for all goods,We can provide testing vedios.

 

 

Q3: What is your sample policy?

 

A: You can order 1 piece sample to test before quantity order.

 

 

Q2: What is your terms of delivery?

 

A: FOB, CIF, CFR,EXW,DDU

 

 

 

Q1: What is your payment terms?

 

A: T/T 30% as deposit, and 70% before delivery, we will show you the photos of product and package CZPT finished.

Standard Or Nonstandard: Nonstandard
Shaft Hole: 550
Torque: 500kn.M
Bore Diameter: 270
Speed: 1500
Structure: Rigid
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

Can drive shafts be adapted for use in both automotive and industrial settings?

Yes, drive shafts can be adapted for use in both automotive and industrial settings. While there may be some differences in design and specifications based on the specific application requirements, the fundamental principles and functions of drive shafts remain applicable in both contexts. Here’s a detailed explanation:

1. Power Transmission:

Drive shafts serve the primary purpose of transmitting rotational power from a power source, such as an engine or motor, to driven components, which can be wheels, machinery, or other mechanical systems. This fundamental function applies to both automotive and industrial settings. Whether it’s delivering power to the wheels of a vehicle or transferring torque to industrial machinery, the basic principle of power transmission remains the same for drive shafts in both contexts.

2. Design Considerations:

While there may be variations in design based on specific applications, the core design considerations for drive shafts are similar in both automotive and industrial settings. Factors such as torque requirements, operating speeds, length, and material selection are taken into account in both cases. Automotive drive shafts are typically designed to accommodate the dynamic nature of vehicle operation, including variations in speed, angles, and suspension movement. Industrial drive shafts, on the other hand, may be designed for specific machinery and equipment, taking into consideration factors such as load capacity, operating conditions, and alignment requirements. However, the underlying principles of ensuring proper dimensions, strength, and balance are essential in both automotive and industrial drive shaft designs.

3. Material Selection:

The material selection for drive shafts is influenced by the specific requirements of the application, whether in automotive or industrial settings. In automotive applications, drive shafts are commonly made from materials such as steel or aluminum alloys, chosen for their strength, durability, and ability to withstand varying operating conditions. In industrial settings, drive shafts may be made from a broader range of materials, including steel, stainless steel, or even specialized alloys, depending on factors such as load capacity, corrosion resistance, or temperature tolerance. The material selection is tailored to meet the specific needs of the application while ensuring efficient power transfer and durability.

4. Joint Configurations:

Both automotive and industrial drive shafts may incorporate various joint configurations to accommodate the specific requirements of the application. Universal joints (U-joints) are commonly used in both contexts to allow for angular movement and compensate for misalignment between the drive shaft and driven components. Constant velocity (CV) joints are also utilized, particularly in automotive drive shafts, to maintain a constant velocity of rotation and accommodate varying operating angles. These joint configurations are adapted and optimized based on the specific needs of automotive or industrial applications.

5. Maintenance and Service:

While maintenance practices may vary between automotive and industrial settings, the importance of regular inspection, lubrication, and balancing remains crucial in both cases. Both automotive and industrial drive shafts benefit from periodic maintenance to ensure optimal performance, identify potential issues, and prolong the lifespan of the drive shafts. Lubrication of joints, inspection for wear or damage, and balancing procedures are common maintenance tasks for drive shafts in both automotive and industrial applications.

6. Customization and Adaptation:

Drive shafts can be customized and adapted to meet the specific requirements of various automotive and industrial applications. Manufacturers often offer drive shafts with different lengths, diameters, and joint configurations to accommodate a wide range of vehicles or machinery. This flexibility allows for the adaptation of drive shafts to suit the specific torque, speed, and dimensional requirements of different applications, whether in automotive or industrial settings.

In summary, drive shafts can be adapted for use in both automotive and industrial settings by considering the specific requirements of each application. While there may be variations in design, materials, joint configurations, and maintenance practices, the fundamental principles of power transmission, design considerations, and customization options remain applicable in both contexts. Drive shafts play a crucial role in both automotive and industrial applications, enabling efficient power transfer and reliable operation in a wide range of mechanical systems.

pto shaft

How do drive shafts handle variations in load and vibration during operation?

Drive shafts are designed to handle variations in load and vibration during operation by employing various mechanisms and features. These mechanisms help ensure smooth power transmission, minimize vibrations, and maintain the structural integrity of the drive shaft. Here’s a detailed explanation of how drive shafts handle load and vibration variations:

1. Material Selection and Design:

Drive shafts are typically made from materials with high strength and stiffness, such as steel alloys or composite materials. The material selection and design take into account the anticipated loads and operating conditions of the application. By using appropriate materials and optimizing the design, drive shafts can withstand the expected variations in load without experiencing excessive deflection or deformation.

2. Torque Capacity:

Drive shafts are designed with a specific torque capacity that corresponds to the expected loads. The torque capacity takes into account factors such as the power output of the driving source and the torque requirements of the driven components. By selecting a drive shaft with sufficient torque capacity, variations in load can be accommodated without exceeding the drive shaft’s limits and risking failure or damage.

3. Dynamic Balancing:

During the manufacturing process, drive shafts can undergo dynamic balancing. Imbalances in the drive shaft can result in vibrations during operation. Through the balancing process, weights are strategically added or removed to ensure that the drive shaft spins evenly and minimizes vibrations. Dynamic balancing helps to mitigate the effects of load variations and reduces the potential for excessive vibrations in the drive shaft.

4. Dampers and Vibration Control:

Drive shafts can incorporate dampers or vibration control mechanisms to further minimize vibrations. These devices are typically designed to absorb or dissipate vibrations that may arise from load variations or other factors. Dampers can be in the form of torsional dampers, rubber isolators, or other vibration-absorbing elements strategically placed along the drive shaft. By managing and attenuating vibrations, drive shafts ensure smooth operation and enhance overall system performance.

5. CV Joints:

Constant Velocity (CV) joints are often used in drive shafts to accommodate variations in operating angles and to maintain a constant speed. CV joints allow the drive shaft to transmit power even when the driving and driven components are at different angles. By accommodating variations in operating angles, CV joints help minimize the impact of load variations and reduce potential vibrations that may arise from changes in the driveline geometry.

6. Lubrication and Maintenance:

Proper lubrication and regular maintenance are essential for drive shafts to handle load and vibration variations effectively. Lubrication helps reduce friction between moving parts, minimizing wear and heat generation. Regular maintenance, including inspection and lubrication of joints, ensures that the drive shaft remains in optimal condition, reducing the risk of failure or performance degradation due to load variations.

7. Structural Rigidity:

Drive shafts are designed to have sufficient structural rigidity to resist bending and torsional forces. This rigidity helps maintain the integrity of the drive shaft when subjected to load variations. By minimizing deflection and maintaining structural integrity, the drive shaft can effectively transmit power and handle variations in load without compromising performance or introducing excessive vibrations.

8. Control Systems and Feedback:

In some applications, drive shafts may be equipped with control systems that actively monitor and adjust parameters such as torque, speed, and vibration. These control systems use sensors and feedback mechanisms to detect variations in load or vibrations and make real-time adjustments to optimize performance. By actively managing load variations and vibrations, drive shafts can adapt to changing operating conditions and maintain smooth operation.

In summary, drive shafts handle variations in load and vibration during operation through careful material selection and design, torque capacity considerations, dynamic balancing, integration of dampers and vibration control mechanisms, utilization of CV joints, proper lubrication and maintenance, structural rigidity, and, in some cases, control systems and feedback mechanisms. By incorporating these features and mechanisms, drive shafts ensure reliable and efficient power transmission while minimizing the impact of load variations and vibrations on overall system performance.

pto shaft

Are there variations in drive shaft designs for different types of machinery?

Yes, there are variations in drive shaft designs to cater to the specific requirements of different types of machinery. The design of a drive shaft is influenced by factors such as the application, power transmission needs, space limitations, operating conditions, and the type of driven components. Here’s an explanation of how drive shaft designs can vary for different types of machinery:

1. Automotive Applications:

In the automotive industry, drive shaft designs can vary depending on the vehicle’s configuration. Rear-wheel-drive vehicles typically use a single-piece or two-piece drive shaft, which connects the transmission or transfer case to the rear differential. Front-wheel-drive vehicles often use a different design, employing a drive shaft that combines with the constant velocity (CV) joints to transmit power to the front wheels. All-wheel-drive vehicles may have multiple drive shafts to distribute power to all wheels. The length, diameter, material, and joint types can differ based on the vehicle’s layout and torque requirements.

2. Industrial Machinery:

Drive shaft designs for industrial machinery depend on the specific application and power transmission requirements. In manufacturing machinery, such as conveyors, presses, and rotating equipment, drive shafts are designed to transfer power efficiently within the machine. They may incorporate flexible joints or use a splined or keyed connection to accommodate misalignment or allow for easy disassembly. The dimensions, materials, and reinforcement of the drive shaft are selected based on the torque, speed, and operating conditions of the machinery.

3. Agriculture and Farming:

Agricultural machinery, such as tractors, combines, and harvesters, often requires drive shafts that can handle high torque loads and varying operating angles. These drive shafts are designed to transmit power from the engine to attachments and implements, such as mowers, balers, tillers, and harvesters. They may incorporate telescopic sections to accommodate adjustable lengths, flexible joints to compensate for misalignment during operation, and protective shielding to prevent entanglement with crops or debris.

4. Construction and Heavy Equipment:

Construction and heavy equipment, including excavators, loaders, bulldozers, and cranes, require robust drive shaft designs capable of transmitting power in demanding conditions. These drive shafts often have larger diameters and thicker walls to handle high torque loads. They may incorporate universal joints or CV joints to accommodate operating angles and absorb shocks and vibrations. Drive shafts in this category may also have additional reinforcements to withstand the harsh environments and heavy-duty applications associated with construction and excavation.

5. Marine and Maritime Applications:

Drive shaft designs for marine applications are specifically engineered to withstand the corrosive effects of seawater and the high torque loads encountered in marine propulsion systems. Marine drive shafts are typically made from stainless steel or other corrosion-resistant materials. They may incorporate flexible couplings or dampening devices to reduce vibration and mitigate the effects of misalignment. The design of marine drive shafts also considers factors such as shaft length, diameter, and support bearings to ensure reliable power transmission in marine vessels.

6. Mining and Extraction Equipment:

In the mining industry, drive shafts are used in heavy machinery and equipment such as mining trucks, excavators, and drilling rigs. These drive shafts need to withstand extremely high torque loads and harsh operating conditions. Drive shaft designs for mining applications often feature larger diameters, thicker walls, and specialized materials such as alloy steel or composite materials. They may incorporate universal joints or CV joints to handle operating angles, and they are designed to be resistant to abrasion and wear.

These examples highlight the variations in drive shaft designs for different types of machinery. The design considerations take into account factors such as power requirements, operating conditions, space constraints, alignment needs, and the specific demands of the machinery or industry. By tailoring the drive shaft design to the unique requirements of each application, optimal power transmission efficiency and reliability can be achieved.

China Good quality SWC550wf Double Flange Design Without Length Compensation for Steel Rolling Mill High Speed/High Torque Universaljoint Shaft/Cardan Shaft/Drive Shaft  China Good quality SWC550wf Double Flange Design Without Length Compensation for Steel Rolling Mill High Speed/High Torque Universaljoint Shaft/Cardan Shaft/Drive Shaft
editor by CX 2023-09-06

China 2-28-357 weld flange yoke for automotive cardan drive shaft used auto parts germany 5-153X universal joint drive shaft coupler

Error:获取session失败,

air-compressor

Drive shaft type

The driveshaft transfers torque from the engine to the wheels and is responsible for the smooth running of the vehicle. Its design had to compensate for differences in length and angle. It must also ensure perfect synchronization between its joints. The drive shaft should be made of high-grade materials to achieve the best balance of stiffness and elasticity. There are three main types of drive shafts. These include: end yokes, tube yokes and tapered shafts.

tube yoke

Tube yokes are shaft assemblies that use metallic materials as the main structural component. The yoke includes a uniform, substantially uniform wall thickness, a first end and an axially extending second end. The first diameter of the drive shaft is greater than the second diameter, and the yoke further includes a pair of opposing lugs extending from the second end. These lugs have holes at the ends for attaching the axle to the vehicle.
By retrofitting the driveshaft tube end into a tube fork with seat. This valve seat transmits torque to the driveshaft tube. The fillet weld 28 enhances the torque transfer capability of the tube yoke. The yoke is usually made of aluminum alloy or metal material. It is also used to connect the drive shaft to the yoke. Various designs are possible.
The QU40866 tube yoke is used with an external snap ring type universal joint. It has a cup diameter of 1-3/16″ and an overall width of 4½”. U-bolt kits are another option. It has threaded legs and locks to help secure the yoke to the drive shaft. Some performance cars and off-road vehicles use U-bolts. Yokes must be machined to accept U-bolts, and U-bolt kits are often the preferred accessory.
The end yoke is the mechanical part that connects the drive shaft to the stub shaft. These yokes are usually designed for specific drivetrain components and can be customized to your needs. Pat’s drivetrain offers OEM replacement and custom flanged yokes.
If your tractor uses PTO components, the cross and bearing kit is the perfect tool to make the connection. Additionally, cross and bearing kits help you match the correct yoke to the shaft. When choosing a yoke, be sure to measure the outside diameter of the U-joint cap and the inside diameter of the yoke ears. After taking the measurements, consult the cross and bearing identification drawings to make sure they match.
While tube yokes are usually easy to replace, the best results come from a qualified machine shop. Dedicated driveshaft specialists can assemble and balance finished driveshafts. If you are unsure of a particular aspect, please refer to the TM3000 Driveshaft and Cardan Joint Service Manual for more information. You can also consult an excerpt from the TSB3510 manual for information on angle, vibration and runout.
The sliding fork is another important part of the drive shaft. It can bend over rough terrain, allowing the U-joint to keep spinning in tougher conditions. If the slip yoke fails, you will not be able to drive and will clang. You need to replace it as soon as possible to avoid any dangerous driving conditions. So if you notice any dings, be sure to check the yoke.
If you detect any vibrations, the drivetrain may need adjustment. It’s a simple process. First, rotate the driveshaft until you find the correct alignment between the tube yoke and the sliding yoke of the rear differential. If there is no noticeable vibration, you can wait for a while to resolve the problem. Keep in mind that it may be convenient to postpone repairs temporarily, but it may cause bigger problems later.
air-compressor

end yoke

If your driveshaft requires a new end yoke, CZPT has several drivetrain options. Our automotive end yoke inventory includes keyed and non-keyed options. If you need tapered or straight holes, we can also make them for you.
A U-bolt is an industrial fastener that has U-shaped threads on its legs. They are often used to join two heads back to back. These are convenient options to help keep drivetrain components in place when driving over rough terrain, and are generally compatible with a variety of models. U-bolts require a specially machined yoke to accept them, so be sure to order the correct size.
The sliding fork helps transfer power from the transfer case to the driveshaft. They slide in and out of the transfer case, allowing the u-joint to rotate. Sliding yokes or “slips” can be purchased separately. Whether you need a new one or just a few components to upgrade your driveshaft, 4 CZPT Parts will have the parts you need to repair your vehicle.
The end yoke is a necessary part of the drive shaft. It connects the drive train and the mating flange. They are also used in auxiliary power equipment. CZPT’s drivetrains are stocked with a variety of flanged yokes for OEM applications and custom builds. You can also find flanged yokes for constant velocity joints in our extensive inventory. If you don’t want to modify your existing drivetrain, we can even make a custom yoke for you.

China 2-28-357 weld flange yoke for automotive cardan drive shaft used auto parts germany 5-153X universal joint     drive shaft coupler	China 2-28-357 weld flange yoke for automotive cardan drive shaft used auto parts germany 5-153X universal joint     drive shaft coupler
editor by CX 2023-04-25

China supplier Clamping Shaft Coupling Driving Elastic Grooved Love Joy Nyfl Plastic Flange Chain Brass Metal Drive Joint Magnetic with Best Sales

Application: Metal merchandise
Thickness: ten
Normal: GB
Certification: GS
Grade: metal
Tolerance: ±1%
Processing Provider: Bending
Solution Title: HLL
Delivery Time: 15-21 days
Warranty: 1 Year
Relevant Industries: Common Joint Coupling
Custom-made support: OEM, ODM, OBM
Structure: Double
Running Angle: 15-twenty five
Material: ALLOY Metal
Type: Cardan shaft
Flange diameter: 58-440
Greatest speed(r/min): -4000(More than one thousand speeds need to have to be personalized)
Packaging Specifics: Wood scenario
Port: ZheJiang

Product Information Display DESCRIPTION Clamping Shaft Coupling Driving Elastic Grooved Enjoy Pleasure Nyfl Plastic Flange Chain Brass Steel Generate Joint Magnetic

ModelNominal Torque TnN • mAllowable Velocity [n] r/mi nSHAFT Gap DIAMETER d dzShaft Hole LengthSizeWeight kg
Y J J, Z ProductDD,S
L, L
HL1250850012 〜2427 〜5290402.52
HL2560630020 〜3538 〜82120552.55
HL31250475030 〜4860 〜112160752.five8
HL42500387040 〜6384 〜142195100322
HL53150345050 〜7584 〜142220120330
HL66300272060 〜85107〜172280140453
HL711200236070 〜110100〜212320170498
HL816000212080 〜125132〜2123602005119
HL9224001850100〜140167〜2524102305197
HL10355001600110〜180167〜3024802806322
HL11500001400130〜220202〜3525403406520
HL12800001220100〜180242〜4106304007714
HL131250001080190〜300282〜47071046581057
HL14180000950240〜340330〜55080053081956
Remark :HL12、HL13、HL14 When employing Z-shaped holes, check out regardless of whether the counterbore is allowed.
Factory Screening Equipment Roughness Tester Metallography Microscope Micro vickers Contourograph Coordinate Measuring Device Height Guage Company Info ZheJiang CZPT Driving Gear Engineering Co., Ltd. ZheJiang CZPT Driving Gear Technology Co., Ltd. is a specialist R&D and maker of couplings, cardan shafts and gearboxes with a registered money of 36.88 million. The firm handles an spot of 55 acres, with a production workshop of twelve,000 square meters and 108 production tools. With powerful power, advanced technological procedure and much more than twenty several years of producing knowledge, the firm has passed ISO9001 quality management system certification. It was recognized as a higher-tech company by ZheJiang Province Business and Information Engineering. It is a member device of transmission connecting areas of China Equipment General Areas Market Association, and has 8 utility design patent certificates. The company’s foremost items primarily contain elastic couplings, rigid couplings and other dozens of collection of couplings with hundreds of technical specs, which are commonly used in metallurgy, mining, cement, paper, electric powered energy, chemical market, wind electrical power, petroleum, port equipment, and so forth. market. It has presented robust technical and equipment assistance for the import and localization of couplings of several domestic metal mills, and has won unanimous praise from the greater part of users. COOPERATIVE Consumers OUR Certification FAQ one: Are you a trading business or a manufacturer ?We are a skilled producer of couplings and universal joints.2:Why select CZPT Driving Gear Engineering?As a skilled maker of coupling and universal joints, we possess a skillful staff of employees and designers To give our customers with first-class providers.3: Can You Strictly Stick to The Tolerance on The Drawing And Meet up with The High Precision?Yes, we can, we can provide high precision areas and make the elements as your drawing.4:How long does it consider to delivery?Generally, it is 1-2 days if the merchandise are in inventory. or it is 5-10 times if the items are not in inventory, it depends on quantity.5:How to deal with the components gained when they are found to be in very poor top quality?A: In situation of non- conformance, make sure you contact us immediately, we will examine the troubles and have them reworked or fixed at the first time. If none of these works, we assistance a refund.6: Can I get a HL Variety Elastic Pin Coupling sample?A : Of Course . We source cost-free samples for you check good quality.7:What is the direct time for microfiber HL Kind Elastic Pin Coupling samples?A : Current sample requirements 3-5 days , personalized sample needs 7~fifteen times.8:What specific do you use to send out the HL Sort Elastic Pin Coupling samples?A : Typically we ship sample through DHL , UPS , FedEx , DPEX , ARAMEX or SF . Quick about 3-5 days , slower about 7-14 times to arrive.

Guide to Drive Shafts and U-Joints

If you’re concerned about the performance of your car’s driveshaft, you’re not alone. Many car owners are unaware of the warning signs of a failed driveshaft, but knowing what to look for can help you avoid costly repairs. Here is a brief guide on drive shafts, U-joints and maintenance intervals. Listed below are key points to consider before replacing a vehicle driveshaft.
air-compressor

Symptoms of Driveshaft Failure

Identifying a faulty driveshaft is easy if you’ve ever heard a strange noise from under your car. These sounds are caused by worn U-joints and bearings supporting the drive shaft. When they fail, the drive shafts stop rotating properly, creating a clanking or squeaking sound. When this happens, you may hear noise from the side of the steering wheel or floor.
In addition to noise, a faulty driveshaft can cause your car to swerve in tight corners. It can also lead to suspended bindings that limit overall control. Therefore, you should have these symptoms checked by a mechanic as soon as you notice them. If you notice any of the symptoms above, your next step should be to tow your vehicle to a mechanic. To avoid extra trouble, make sure you’ve taken precautions by checking your car’s oil level.
In addition to these symptoms, you should also look for any noise from the drive shaft. The first thing to look for is the squeak. This was caused by severe damage to the U-joint attached to the drive shaft. In addition to noise, you should also look for rust on the bearing cap seals. In extreme cases, your car can even shudder when accelerating.
Vibration while driving can be an early warning sign of a driveshaft failure. Vibration can be due to worn bushings, stuck sliding yokes, or even springs or bent yokes. Excessive torque can be caused by a worn center bearing or a damaged U-joint. The vehicle may make unusual noises in the chassis system.
If you notice these signs, it’s time to take your car to a mechanic. You should check regularly, especially heavy vehicles. If you’re not sure what’s causing the noise, check your car’s transmission, engine, and rear differential. If you suspect that a driveshaft needs to be replaced, a certified mechanic can replace the driveshaft in your car.
air-compressor

Drive shaft type

Driveshafts are used in many different types of vehicles. These include four-wheel drive, front-engine rear-wheel drive, motorcycles and boats. Each type of drive shaft has its own purpose. Below is an overview of the three most common types of drive shafts:
The driveshaft is a circular, elongated shaft that transmits torque from the engine to the wheels. Drive shafts often contain many joints to compensate for changes in length or angle. Some drive shafts also include connecting shafts and internal constant velocity joints. Some also include torsional dampers, spline joints, and even prismatic joints. The most important thing about the driveshaft is that it plays a vital role in transmitting torque from the engine to the wheels.
The drive shaft needs to be both light and strong to move torque. While steel is the most commonly used material for automotive driveshafts, other materials such as aluminum, composites, and carbon fiber are also commonly used. It all depends on the purpose and size of the vehicle. Precision Manufacturing is a good source for OEM products and OEM driveshafts. So when you’re looking for a new driveshaft, keep these factors in mind when buying.
Cardan joints are another common drive shaft. A universal joint, also known as a U-joint, is a flexible coupling that allows one shaft to drive the other at an angle. This type of drive shaft allows power to be transmitted while the angle of the other shaft is constantly changing. While a gimbal is a good option, it’s not a perfect solution for all applications.
CZPT, Inc. has state-of-the-art machinery to service all types of drive shafts, from small cars to race cars. They serve a variety of needs, including racing, industry and agriculture. Whether you need a new drive shaft or a simple adjustment, the staff at CZPT can meet all your needs. You’ll be back on the road soon!

U-joint

If your car yoke or u-joint shows signs of wear, it’s time to replace them. The easiest way to replace them is to follow the steps below. Use a large flathead screwdriver to test. If you feel any movement, the U-joint is faulty. Also, inspect the bearing caps for damage or rust. If you can’t find the u-joint wrench, try checking with a flashlight.
When inspecting U-joints, make sure they are properly lubricated and lubricated. If the joint is dry or poorly lubricated, it can quickly fail and cause your car to squeak while driving. Another sign that a joint is about to fail is a sudden, excessive whine. Check your u-joints every year or so to make sure they are in proper working order.
Whether your u-joint is sealed or lubricated will depend on the make and model of your vehicle. When your vehicle is off-road, you need to install lubricable U-joints for durability and longevity. A new driveshaft or derailleur will cost more than a U-joint. Also, if you don’t have a good understanding of how to replace them, you may need to do some transmission work on your vehicle.
When replacing the U-joint on the drive shaft, be sure to choose an OEM replacement whenever possible. While you can easily repair or replace the original head, if the u-joint is not lubricated, you may need to replace it. A damaged gimbal joint can cause problems with your car’s transmission or other critical components. Replacing your car’s U-joint early can ensure its long-term performance.
Another option is to use two CV joints on the drive shaft. Using multiple CV joints on the drive shaft helps you in situations where alignment is difficult or operating angles do not match. This type of driveshaft joint is more expensive and complex than a U-joint. The disadvantages of using multiple CV joints are additional length, weight, and reduced operating angle. There are many reasons to use a U-joint on a drive shaft.
air-compressor

maintenance interval

Checking U-joints and slip joints is a critical part of routine maintenance. Most vehicles are equipped with lube fittings on the driveshaft slip joint, which should be checked and lubricated at every oil change. CZPT technicians are well-versed in axles and can easily identify a bad U-joint based on the sound of acceleration or shifting. If not repaired properly, the drive shaft can fall off, requiring expensive repairs.
Oil filters and oil changes are other parts of a vehicle’s mechanical system. To prevent rust, the oil in these parts must be replaced. The same goes for transmission. Your vehicle’s driveshaft should be inspected at least every 60,000 miles. The vehicle’s transmission and clutch should also be checked for wear. Other components that should be checked include PCV valves, oil lines and connections, spark plugs, tire bearings, steering gearboxes and brakes.
If your vehicle has a manual transmission, it is best to have it serviced by CZPT’s East Lexington experts. These services should be performed every two to four years or every 24,000 miles. For best results, refer to the owner’s manual for recommended maintenance intervals. CZPT technicians are experienced in axles and differentials. Regular maintenance of your drivetrain will keep it in good working order.

China supplier Clamping Shaft Coupling Driving Elastic Grooved Love Joy Nyfl Plastic Flange Chain Brass Metal Drive Joint Magnetic     with Best Sales China supplier Clamping Shaft Coupling Driving Elastic Grooved Love Joy Nyfl Plastic Flange Chain Brass Metal Drive Joint Magnetic     with Best Sales

china Custom Spline Shaft Weld Flange 16teeth for Nissan Truck Cwb520 Cwa54 Cwa53 RF8 Rear Axle Drive Shaft manufacturers

Item Description

Huihong CZPT elements Co, . Ltd was established in 2001, it is a specialist factory that largely creates vehicle parts, concrete pump components and contruction equipment parts. In past 20 many years, CZPT compary devotes alone to the manufacture and improvement of the pasrt of transmission, suspension and the fitting of strengthen.

Our goods market properly not only on foreign markets but also on Chinese types. Components of themare utilized by consumersand dealers. In these a long time. Our organization imports engineering continually, enlarges th expenditure, renews the equipments, attempts to increase the high quality, the physical appearance and the technologies of items. Ww mostly market the fiting of many sorts of

Car areas: Japanese: MITSUBISHI, HINO, Nissan, CZPT Korea: HYUNDAI, KIA. DAEWOO And parts of Chinese collection, and the fitings of the CZPT pean collection.

Concrete pump elements: Chinese: CZPT , CZPT , CZPT G Korea: CZPT JIN, KCP, EVERDIGM Germany: PM.

HuiHong organization follows the offering notion of “Quality and what CZPT ers want are the most critical factor to us, comstantly enhance CZPT shill”. We also welcome traders all above the globe to come to CZPT caompany and discuss about company collectively.
 

Product Identify Generate SHAFT SLEEVE YOKE
Software

Truck CZPT Shaft

TMachinery Check Report Provided
Video clip outgoing-inspection Provided
Dimensions Customized
High quality First & CZPT

 

If you have any queries, remember to get in touch with us.

Q1. Are you a producer or buying and selling company?
A:We are a maker with self-export rights. 

Q2. What are your phrases of packing?
A: Typically, we pack CZPT merchandise in CZPT white packing containers and brown cartons, picket packing containers. If you have legally registered a patent, 
we can pack the items in your branded containers soon after getting your authorization letters.

Q3. What is your terms of payment?
A: T/T thirty% as deposit, and 70% prior to shipping and delivery. We will demonstrate you the photographs of the products and packages 
just before you pay the balance.

This autumn. How about your shipping time?
A: Usually, it will get fifteen to thirty days after receiving your CZPT payment. The specific delivery time depends 
on the things and the amount of your order.

Q5. Can you generate in accordance to the samples?
A: Yes, we can make by your samples or technical drawings. We can create the molds and fixtures.

Q6.  Do you take a look at all your items just before shipping?
 A: Of course, we have one hundred% examination just before supply

Q7:  How do you make CZPT enterprise CZPT -phrase and great partnership?
A:1. We hold good quality and competitive price to ensure CZPT CZPT ers reward
two. We respect every CZPT er as CZPT buddy and we sincerely do company and make buddies with them, 
no subject exactly where they occur from.

china  Customized Spline Shaft Weld Flange 16teeth for Nissan Truck Cwb520 Cwa54 Cwa53 RF8 Rear Axle Drive Shaft producers

Best Custom made in China – replacement parts – PTO shaft manufacturer & factory Nontelescopic 2006 gmc sierra drive shaft Flange Universal Coupling with ce certificate top quality low price

We – EPG Group the largest agricultural gearbox and pto manufacturing unit in China with 5 various branches. For much more particulars: Mobile/whatsapp/telegram/Kakao us at: 0086-13083988828

Best  Custom  made in China - replacement parts - PTO shaft manufacturer & factory Nontelescopic  2006 gmc sierra drive shaft Flange Universal Coupling with ce certificate top quality low price

measuring pto shaft duration Major pto shaft for 569 john deere baler products rzr one thousand travel shaft include: 2001 jeep grand cherokee front travel shaft manure bmw x3 rear travel shaft spreading shaft tractor truck, miata driveshaft potato pto jackshaft planting/harvesting howse brush hog elements equipment, 2005 silverado generate shaft disc plough, disc harrow, grass Mower/slasher, corn and wheat thershers, seeder, mouldboard plow, deep subsoiler equipment, rotary tiller, rear blade, fertilizer spreader, blend rice harvester, corn thresher, farm trailer, ridger, trencher, stubble cleaner, earth auger, cultivator and its accessories: Plow disc blades, harrowing film, plough suggestion and share, cultivator tine, casting parts etc. Our products is well-liked exported to the United States, Germany, Australia, Russia, Spain, Hungary, Zimbabwe, Ukraine, Nigeria, Peru, Brazil, Middle and South The us, Thailand, Pakistan, Indonesia, more than sixty nations around the world and regions.

Weighty Obligation SWC WF Cardan Shaft(JB/T5513-ninety one)

Cardan shaft is widely utilized in rolling mill, punch, straightener, crusher, ship generate,paper generating gear, widespread machinery, drinking water pump gear,take a look at bench and other mechanical apps.

♦Product Framework

Large Obligation SWC WF Cardan Shaft Standard Parameter And Main Dimension(JB/T5513-1991)

Design Tactical diameter
D
mm
Nominal torque
Tn
kN·m
Fatique torque
Tf
kN·m
Axis rotation
β
Measurement
mm
Lmin Done
js11
D2 D3 Lm n-d

k

β=5° β=10° β=5° β=10°
SWC680WF 680 1400 710 5°10° 1840 1940 635 550 508 335 360 24-twenty five 55
SWC780WF 780 2500 1250 1980 2120 725 640 630 370 405 24-31 62
SWC840WF 840 3150 1600 2200 2420 775 710 660 425 480 24-38 70
SWC920WF 920 4000 2000 2340 2420 855 760 750 460 480 24-38 eighty
SWC1000WF 1000 5000 2500 2560 2640 915 840 790 515 535 20-50 90
SWC1100WF 1100 6310 3150 2880 3200 1015 920 850 570 600 20-50 one hundred
SWC1200WF 1200 8000 4000 3080 3240 1100 1000 900 620 660 20-58 one hundred ten

·Discover:1.Tf-Torque allowed by exhaustion strength under varible load

            2.Lmin-Minimal length after shortening

            3.L-Set up size as required

 

♦Product Show

 

 

♦Huading Cardan Universal Shaft Attributes
1. We supply in excess of 1000 different spare components for a vast variety of agricultural machinery, from EPT harvesters, mowers,rakes to balers.They are employed for various can make like John Deere, LAVERDA ,Claas, New Holland and Situation/IH. 

2.Elastomer connecting in the center

3.Can absorb vibration, compensates for radial, axial and angular deviation

four.Oil resistance and electrical insulation

five.Have the identical characteristic of clockwise and anticlockwise rotation

♦Cardan Shaft Types
We can offer you SWP,SWC,WSD,WS universal coupling as following:
Welded shaft variety with length payment / enlargement joint

Brief type with size payment / expansion joint

Quick kind with no duration compensation / enlargement joint

Lengthy type with no size compensation / expansion joint

Double flange with size compensation / growth joint

Prolonged sort with large length payment / huge growth joint

Tremendous Short sort with size payment / enlargement joint

♦Other Merchandise Checklist

Transmission Machinery 
Areas Identify
Product
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
Large Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Organization
Our organization materials distinct kinds of products. Higher good quality and affordable cost. We stick to the basic principle of “quality initial, provider 1st, constant advancement and innovation to fulfill the buyers” for the administration and “zero defect, zero problems” as the top quality goal. To EPT our support, we give the merchandise with great good quality at the realistic price tag.

Welcome to customize merchandise from our manufacturing unit and you should supply your 
layout drawings or contact us if you need other requirements.

♦Our Providers
1.Layout Services
Our design team has knowledge in cardan shaft relating to product design and style and advancement. If you have any needs for your new item or desire to make additional improvements, we are here to provide our help.

two.Merchandise Companies
raw materia EPT → Slicing → Forging →Rough machining →Shot blasting →Heat therapy →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3.Samples Process
We could develop the sample according to your necessity and amend the sample consistently to meet your need.

four.Study & Growth
We typically analysis the new needs of the market place and produce the new design when there is new vehicles in the marketplace.

5.High quality Control
Each stage ought to be EPT examination by Professional Employees according to the stHangZhourd of ISO9001 and TS16949.

FAQ
Q 1: Are you buying and selling organization or company?
A: We are a specialist producer specializing in manufacturing
numerous collection of couplings.

Q 2:Can you do OEM?
Sure, we can. We can do OEM & ODM for all the buyers with custom-made artworks of PDF or AI format.

Q 3:How lengthy is your shipping and delivery time?
Usually it is 20-thirty days if the items are not in stock. It is according to amount.

Q 4: Do you supply samples ? Is it cost-free or extra ?
Yes, we could provide the sample but not for free of charge.Truly we have a very very good price tag principle, when you make the bulk purchase then cost of sample will be deducted.

Q 5: How long is your guarantee?
A: Our Warranty is twelve month beneath normal circumstance.

Q 6: What is the MOQ?
A:Typically our MOQ is 1pcs.

Q 7: Do you have inspection processes for coupling ?
A:one hundred% self-inspection just before packing.

Q 8: Can I have a pay a visit to to your factory ahead of the buy?
A: Certain,welcome to check out our manufacturing unit.

Q 9: What’s your payment?
A:1) T/T. 2) L/C 

 

Best  Custom  made in China - replacement parts - PTO shaft manufacturer & factory Nontelescopic  2006 gmc sierra drive shaft Flange Universal Coupling with ce certificate top quality low price